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Abstract. Mining strong correlations from transactional databases often leads

to more meaningful results than mining association rules. In such mining, null

(transaction)-invariance is an important property of the correlation measures.

Unfortunately, some useful null-invariant measures such as Kulczynski and

Cosine, which can discover correlations even for the very unbalanced cases, lack

the (anti)-monotonicity property. Thus, they could only be applied to frequent

itemsets as the post-evaluation step. For large datasets and for low supports, this

approach is computationally prohibitive. This paper presents new properties for

all known null-invariant measures. Based on these properties, we develop efficient

pruning techniques and design the Apriori-like algorithm NICOMINER for min-

ing strongly correlated patterns directly. We develop both the threshold-bounded

and the top-k variations of the algorithm, where top-k is used when the optimal

correlation threshold is not known in advance and to give user control over the

output size. We test NICOMINER on real-life datasets from different application

domains, using Cosine as an example of the null-invariant correlation measure.

We show that NICOMINER outperforms support-based approach more than an

order of magnitude, and that it is very useful for discovering top correlations in

itemsets with low support.

1 Introduction

One of the central tasks in data mining is finding correlations in binary relations. Typi-

cally, this is formulated as a market basket problem [2], where there is a set of baskets

(transactions), each of which is a set of items purchased together. The goal is to find

correlations between items, based on their recurrent co-appearance in the same transac-

tion. The usefulness of the correlations based on the market-basket concept was demon-

strated in many different application domains such as climate studies [18], public health

[5], or bioinformatics [9, 21]. With the trend of collecting more and more digitized data,

the discovery of meaningful correlations offers a new insight into relationships between

objects in these large data collections.

In this paper we study the problem of finding groups of items with the top correla-

tions for a given dataset. This implies that we need to rank the correlations. There is no

canonical way to assess the degree of the correlation. This seems to be problem-specific

and cannot be captured by a single correlation measure which is the best for all cases.

As a result, a number of correlation measures has been proposed [8, 16, 17, 19].



2 Sangkyum Kim, Marina Barsky, and Jiawei Han

Table 1. The same dataset contains coffee c, milk m, popcorn p, and soda s. The total number

of transactions is N = 100, 000. According to Lift, correlation(p, s) is significantly stronger
than correlation(m, c). Assessed by null-invariant measures, correlation(m, c) is always much

stronger than correlation(p, s), which is more meaningful, since cm occur together in much more

transactions than ps.

mc m̄c mc̄ m̄c̄ Lift(m, c) Cosine(m, c)
10, 000 1, 000 1, 000 88, 000 8.26 0.91

ps p̄s ps̄ p̄s̄ Lift(p, s) Cosine(p, s)
1, 000 1, 000 1, 000 97, 000 25.00 0.50

In this work we limit ourselves to null (transaction)-invariant [8, 16, 17, 19] corre-

lation measures based on conditional probabilities. They quantify the degree of mutual

relationships between items in a group without taking into account the items outside the

group in question. For example, if we are computing the correlation between coffee (c)

and milk (m), a null-invariant measure does not depend on the number of transactions

which contain neither coffee nor milk - null transactionswith respect to c andm. Thus,

these measures are null (transactions)-invariant.

The importance of null-invariance for uncoveringmeaningful relationships between

objects was analyzed in [19]. If we use correlationmeasureswhich are not null-invariant,

the relationships between objects may appear or disappear simply by changing the num-

ber of transactions which do not contain items in question.

Even for ranking correlationswithin the same dataset we cannot rely on expectation-

based (not null-invariant) measures, since they produce inconsistent and controversial

results, as shown in a sample dataset, presented in Table 1. Here the degree of the corre-

lation of two pairs of items is assessed byLift (not null-invariant) and byCosine (null-

invariant). The items in pair (c,m) are intuitively more correlated than in (p, s), since

they occur together in 83% of all transactions with c or m, while (p, s) occur together
only in 33%. This is reflected in Cosine values 0.91 and 0.50 respectively. However,
according to Lift, correlation in pair (p, s) is significantly larger than in (c,m), which

contradicts our intuition and the common sence. Hence, in order to produce mean-

ingful and consistent top correlations we require from the correlation measure to be

null-invariant.

The five known null-invariant correlation measures are All Confidence, Coherence,

Cosine, Kulczynski and Max Confidence [19]. The degree of the correlation is repre-

sented as a real number between 0 and 1.

For different datasets, the strongest correlations may have different values. It is not

always appropriate to set a correlation threshold such as 0.5 for all datasets. Hence, it is
important to be able to mine the top correlated patterns, instead of patterns with correla-

tion larger than a given threshold. This leads to a problem of mining top-k null-invariant

correlations. An example of top-10 correlations, which we extracted from the titles of
the database-related publications [15], is shown in Table 2. Note that the correlation

here is not expected to be very high, since people use different word combinations to

describe even similar ideas. Nevertheless, the top correlated patterns represent quite

meaningful concepts.
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Table 2. Top-10 highly correlated term groups from the paper titles in the DB-DM-IR subset [15]

of the DBLP dataset [1] with minimum support θ = 0.02%.

Pattern Support Cosine

1 object, orient, database 748 0.19
2 sense,word, disambiguation 26 0.18
3 support, vector,machine 122 0.17
4 enforcement, law, coplink 7 0.16
5 nearest, neighbor, search 74 0.13
6 reverse, nearest,neighbor 23 0.13
7 server, sql,microsoft 25 0.12
8 retrieval, cross, language 187 0.11
9 model, relationship, entity 139 0.11
10 random, field, conditional 13 0.10

Finding the itemsets with the highest correlations is not trivial. The naı̈ve approach

would be to extract all frequent itemsets, and then to rank them based on the correlation

within each frequent itemset. Unfortunately, this approach is valid only for itemsets

with high support, and in this case the discovered correlations mostly represent the

common knowledge. If we are to discover interesting correlations in itemsets with low

support, the number of such itemsets can reach several thousands or even millions, thus

making the post-evaluation approach computationally infeasible. In addition, the degree

of the correlation between items can be higher in itemsets with lower support. This

is especially true for such problems as finding correlations between words or finding

correlations between authors in a publication database. Therefore, we want to design an

efficient framework in which we would be able to find the groups of the top correlated

items with low support, without first collecting all frequent itemsets.

The algorithms for the direct mining of interesting null-invariant patterns exist. For

example, the direct computation based on All Confidence and Coherence was proposed

in [10]. However, it is applicable only for null-invariant measures which have the anti-

monotonicity property. Out of five measures, only All Confidence and Coherence are

anti-monotonic. Unfortunately, using only All Confidence or Coherence may not be

appropriate for cases involving unbalanced supports, which was demonstrated in [19].

Strong correlations for such unbalanced cases can be captured if we evaluate the re-

lationships as an average of conditional probabilities. For such cases, two measures

Cosine andKulczynski are the most appropriate ones.
BothCosine andKulczynski represent the means of conditional probabilities: the

geometricmean and the arithmetic mean, respectively. For an itemsetA = {a1, · · · , an}:

Cosine(A) = n

√

√

√

√

n
∏

i=1

P (A|ai), andKulczynski(A) =
1

n

n
∑

i=1

P (A|ai)

where P (A|ai) is a conditional probability of A given ai.
Being an average, Cosine and Kulczynski do not possess neither monotonicity

nor anti-monotonicity properties, and the Apriori principle cannot be applied for effi-

cient pruning based on these measures. Hence, the discovery of all patterns with high

Cosine and Kulczynski values poses a great computational challenge, especially for
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itemsets with low support. To solve this challenging problem, we develop an efficient

algorithmic framework based on new pruning properties common to all null-invariant

measures, but especially valuable for Cosine andKulczynski.

Specifically, our study makes the following contributions.

1. We discover new mathematical properties common to all null-invariant measures.

2. Based on these properties, we design a new pruning strategy which relies mainly

on correlation measures rather than on support.

3. We propose new algorithmNICOMINER forNull InvariantCorrelationMining and

demonstrate its high efficiency on a wide variety of synthetic and real-life datasets.

4. In order to make NICOMINER self-adjustable to the level of the correlations ex-

isting in different datasets, and to give user the control over an output size, we

develop the top-k version of NICOMINER, which allows us to find the top-k cor-

related itemsets without specifying the correlation threshold.

5. Finally, we show meaningful correlations discovered by NICOMINER in itemsets

with low support. It is hard or somtetimes impossible to find such correlations using

the support-based method alone.

The remainder of the paper is organized as follows. In Section 2 we formally define

correlated patterns. In Section 3 we describe the new properties of null-invariant mea-

sures, and in Section 4 we present our new algorithm. Section 5 is a detailed report on

our experiments with synthetic and real datasets. Related work is presented in Section

6, followed by conclusions and future work in Section 7.

We start by introducing a few concepts. Note that for the rest of the paper we use

Cosine as a representative of null-invariant correlation measures.

2 Preliminaries

Let I be a set of items. We define an itemset A = {a1, . . . , an} to be a subset of
n items from I. Let T be a set of transactions where each transaction is a subset of
I. The support of an itemset A, sup(A), is defined to be the number of transactions
containing all items in A. An itemset A is frequent if its support sup(A) is no less than
a user-defined minimum support threshold θ.

Cosine in terms of supports is explicitly defined as:

cos(A) =
sup(A)

n

√

sup(a1)× · · · × sup(an)
. (1)

We define the correlation between items in an itemset as follows:

Definition 1. An itemset A = {a1, . . . , an} is correlated if cos(A) ≥ γ for a given

minimum correlation threshold γ.

The problem of threshold-based correlation mining is to find all correlated itemsets

for the correlation threshold γ. But, even for the experts, it is sometimes hard to set the

proper value of γ. For such cases, it would be helpful to know several patterns with

the highest correlation values. This is the problem of top-k correlation mining, where

only k patterns with the highest correlation values are presented to the user. Note that a

minimum correlation threshold γ is not required for top-k correlation mining.
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Table 3. A small transactional database of 6 transactions and 6 items.

TID Transaction

T1 a1, a3, a4, a5, a6

T2 a3, a5, a6

T3 a2, a4

T4 a1, a4, a5, a6

T5 a3, a6

T6 a2, a4, a5

The lack of the anti-monotonicity property for Cosine poses significant challenges

for mining top correlated patterns. This can be illustrated by the following example.

Example 1. Consider small database of transactions shown in Table 3.

Correlation value for 2-itemset X = {a4, a6} is cos(X) = 0.50. 3-itemset X ′ =
{a1, a4, a6} is a superset of X , and its correlation is cos(X

′) = 0.63. Thus, Cosine

is not anti-monotonic. For the correlation threshold γ = 0.60, we cannot prune all
supersets ofX , even though the correlation inX is below γ.

Correlation value for 2-itemset Y = {a1, a4} is cos(Y ) = 0.71. 3-itemset Y ′ =
{a1, a4, a5} is a superset of Y , and its correlation is cos(Y

′) = 0.63. Thus, Cosine

is also not monotonic. Knowing that Y is a correlated itemset, we cannot assume that

all supersets of Y are also correlated. This shows that finding that cos(X) < γ or that

cos(Y ) ≥ γ does not tell us anything about the correlation value in their supersets, and

hence we cannot stop the extension ofX or Y to larger itemsets.

3 New Properties of Null-invariant Measures

In this section, we describe useful mathematical properties, common to all known null-

invariant measures. These properties are the basis for an efficient pruning used in the

NICOMINER algorithm. Our framework is based on the level-wise Apriori algorithm,

where each level n corresponds to itemsets of n items.

3.1 Level-based properties

The relationships between Cosine of n-itemset A and Cosine values of all its subsets

of size n-1 are captured by the following lemma:

Lemma 1. For any n-itemsetA = {a1, · · · , an} and a set S of allA’s (n-1)-subitemsets:

cos(A) ≤ max
B∈S

(cos(B)). (2)

Proof. Since the maximum is not smaller than the geometric mean:

max
B∈S

(cos(B)) ≥ n

√

cos(a1, · · · , an−1)× · · · × cos(a2, · · · , an). (3)
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Then by the definition of Cosine and from the anti-monotonicity of support:

max
B∈S

(cos(B)) (4)

≥ n

√

sup(a1, · · · , an−1)
n−1

√

sup(a1)× · · · × sup(an−1)
× · · · ×

sup(a2, · · · , an)
n−1

√

sup(a2)× · · · × sup(an)
(5)

≥
sup(a1, · · · , an)

n

√

sup(a1)× · · · × sup(an)
(6)

= cos(A). (7)

Lemma 1 presents an upper bound of Cosine in terms of Cosine values of subitem-

sets. A simple corollary follows from Lemma 1: once Cosine values of all (n-1)-

subitemsets of A = {a1, · · · , an} are less than γ, cos(A) < γ. However, this does

not mean that A and its supersets can be pruned. There might be a superset of A,

A′ = {a1, · · · , an, an+1} with cos(A
′) ≥ γ, because the condition of the lemma may

not be satisfied due to the newly added item an+1.

Nevertheless, Lemma 1 leads to a simple condition for the termination of correla-

tion pattern growth. Even though Cosine for individual patterns is not anti-monotonic,

there is a level-based property which we for convenience call level-anti-monotonicity.

Namely, if all patterns at level n haveCosine values less than γ, then all their supersets

have Cosine less than γ.

Let In be set of all n-itemsets at level n. We denote the maximum cosine value for
all itemsets in In bymaxCos(In). We prove that:

Theorem 1. Cosine is level-anti-monotonic.

Proof. Let In+1 be set of all (n+1)-itemsets at level n+1, and let A
′ be an itemset from

In+1 with maximum cosine value. Let A be an n-subitemset of A
′ whose cosine value

is the maximum from all n-subitemsets of A′. Then, by Lemma 1,

maxCos(In) ≥ cos(A) ≥ cos(A′) = maxCos(In+1). (8)

From Theorem 1 follows:

Corollary 1. Termination of pattern growth (TPG)

If all itemsets at level n are not correlated, then all itemsets at level n′ are not correlated

for any n′ ≥ n.

Note that TPG holds for all five null-invariant correlation measures. The proofs are

essentially similar to that of Cosine, and we omit them due to the page limit.

To demonstrate the termination of pattern growth, consider the following example.

Example 2. For a database described in Table 3 with the minimum support threshold

θ = 2, there exist 5 frequent 3-itemsets shown in Table 4. Assuming the minimum
correlation threshold γ = 0.75, all 3-itemsets have correlation below the threshold.
Then, based on TPG, we do not need to mine n-itemsets for n ≥ 3, and therefore
pattern growth terminates.
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Table 4. Cosine values for all five frequent 3-itemsets from the database in Table 3 (θ = 2). If
γ = 0.75, we can terminate correlation pattern growth according to TPG.

Pattern a1, a4, a5 a1, a4, a6 a1, a5, a6 a3, a5, a6 a4, a5, a6

Cosine 0.63 0.63 0.63 0.55 0.5

3.2 Properties based on a single item

Since Cosine is not anti-monotonic, we cannot prune n-itemsetA even ifA is not corre-

lated. But, in the following, we claim that for some item a from I, knowing correlation
values of all (n-1)-itemsets containing a allows to prune n-itemsets containing a.

Lemma 2. For n-itemsetA = {a1, · · · , an}, and all its subsets of size n-1 which share
the same single item a, if (1) all these subsets are not correlated and (2) the support

of at least one item ai 6= a in A is greater than or equal to sup(a), then A cannot be
correlated.

Proof. Assume a1 = a and sup(an) = max{sup(a1), · · · , sup(an)}, without loss of
generality. By simple algebra, we can show that

n−1

√

sup(a1)× · · · × sup(an−1) ≤
n

√

sup(a1)× · · · × sup(an). (9)

Then

cos(A) =
sup(A)

n

√

sup(a1)× · · · × sup(an−1)× sup(an)
(10)

≤
sup(A)

n−1

√

sup(a1)× · · · × sup(an−1)
(11)

≤
sup(A− {an})

n−1

√

sup(a1)× · · · × sup(an−1)
(12)

≤ cos(A− {an}) (13)

< γ, (14)

where A − {an} represents the (n-1)-subitemset of A which does not contain an item
an with the maximum support.

In other words, if we know that all sub-itemsets containing item a are not correlated,

we know that adding another item cannot make any of them correlated, given this new

item has support not less than sup(a).
Based on Lemma 2, we can claim the following theorem:

Theorem 2. Let item a be an item with the smallest support among all single items

in the database. If all itemsets at level n containing a are not correlated, then all n′-

itemsets containing a are not correlated for all n′ ≥ n.

Proof. Each (n+ 1)-itemset A′ which contains a can be thought of as an extension of

some n-itemset containing awith an item an+1, which has the largest support among all

the items in A′ (since we know that support of a is not the largest). Then, by Lemma 2,

cos(A′) < γ. Since all n-itemsets containing item a have Cosine value less than γ, all
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(n+ 1)-itemsets containing item a have Cosine value less than γ. Iteratively applying

Lemma 2, now to extension of (n+ 1)-itemsets into (n+ 2)-itemsets, containing a, we
conclude that none of the n′-itemsets containing a is correlated, for n′ ≥ n

Based on Theorem 2, we can derive a condition for pruning patterns which contain

the same single item a. For convenience, we call the pruning of a non-promising single

item and its supersets at level n the single-item-based pruning (SIBP).

Corollary 2. Single-Item Based Pruning (SIBP)

If the maximum Cosine value for n-itemsets containing item a is less than γ, and a has

the smallest support between single items existing in the database, then all n′-itemsets

containing a can be pruned for n′ ≥ n.

For the level-wise processing, which we use here, such an item can be removed from

the database. After removing it, we have a new, smaller database, and we can apply the

same principle to the next item, which has the smallest support in this new database.

Again, SIBP holds for all null-invariant correlation measures. We skip the proofs

due to the page limit, but the proofs are very similar or easier than that for Cosine.

The application of the SIBP principle can be illustrated on the following example.

Example 3. Consider the sample database in Table 3 (θ = 2, γ = 0.75). First, all
single frequent items a1 . . . a6 are sorted by support. Then, while counting itemsets at

level 2, the maximum Cosine value of 2-item supersets of each ai is recorded. For

this example, we have: a1 (sup:2, maxCos:0.71), a2 (sup:2, maxCos:0.71), a3 (sup:3,

maxCos:0.87), a4 (sup:4, maxCos:0.75), a5 (sup:4, maxCos:0.75), and a6 (sup:4, max-

Cos:0.86). Now, based on the SIBP principle, we can safely prune all 2-itemsets con-

taining item a1 (or item a2), and we do not need to generate the following 3-itemsets in

Table 4: {a1, a4, a5}, {a1, a4, a6}, and {a1, a5, a6}.

Table 5. Frequent 2-itemsets from the database in Table 3 (θ = 2). For γ = 0.75, all supersets of
a1 and a2 are not correlated according to SIBP.

Pattern a1, a4 a1, a5 a1, a6 a2, a4 a3, a5 a3, a6 a4, a5 a4, a6 a5, a6

Cosine 0.71 0.71 0.71 0.71 0.58 0.87 0.75 0.5 0.75

4 NICoMiner Algorithm

The general framework of NICOMINER is an Apriori-like level-wise (breadth-first)

computation. The candidate itemsets for level n are generated from the itemsets on level

n-1. Then the support and Cosine are computed for all candidate n-itemsets, and they

are pruned based on support and SIBP. The remaining n-itemsets are the candidates for

the next level n+1. If all patterns at level n are not correlated, the algorithm terminates
(TPG).
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4.1 Threshold-based correlation mining

Here we present the correlation mining algorithm (Algorithm 1) for the case when a

minimum correlation threshold γ is given. The pruning properties developed in the

previous section allow to prune uncorrelated patterns in addition to the non-frequent

patterns. In practice, the pruning power of TPG and SIBP is extremely high, which

allows setting very low support thresholds.

Algorithm 1: The threshold-based version of the NICOMINER Algorithm.

input : a transactional database D = {T1, T2, ..., Tn}, minimum correlation threshold γ,
minimum support threshold θ

output: all patterns with correlation at least γ

1 scan D and find all frequent 1-itemsets I1;
2 for n = 2, · · · do
3 generate candidate itemsets In from In−1;

4 scan D to compute support and Cosine values of itemsets in In;
5 output frequent n-itemsets with Cosine ≥ γ;

6 prune itemsets from In based on SIBP and support;
7 if (maxCos(In) < γ) OR (no frequent n-itemsets) then break;

8 end

4.2 Top-k correlation mining

Without knowing what is the top level of correlations in a given dataset, it is hard to

choose an appropriate correlation threshold γ. Running the top-k version of our algo-

rithm helps in this situation. After this, the information about the top correlations can

be used to set a meaningful threshold in order to collect all interesting patterns. Often,

the set of the top-k correlated patterns is interesting in its own right.

In order to find top-k correlated patterns, we can iteratively run the threshold-based

NICOMINER until it produces at least k patterns. If in the current iteration the size of

the output is less than k, we can decrease the correlation threshold γ and run Algorithm

1 with this new parameter. We implemented this iterative top-k approach, halving the

correlation threshold in each iteration.

However, guessing the correlation threshold γ which produces close to k patterns is

not efficient. Not only we need to repeat the entire computation several times, but if we

accidentally set γ too low, we have an expensive computation and a huge output, while

we are interested only in k patterns.

Much more efficient approach would be to adjust threshold γ throughout the mining

process until we get top-k correlated patterns (Algorithm 2). Here, instead of using a

fixed threshold value, we start with γ = 0.0 and keep top k correlated itemsets from
the itemsets processed so far. Once we mine more than k patterns, we set γ to the k-th

largestCosine value, and the pattern growth continues with this new, higher correlation

threshold. Since the correlation threshold is constantly increasing, the termination of the

pattern growth is reached earlier than in the method with the constant initial correlation

threshold.
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Algorithm 2: The top-k version of NICOMINER

input : a transactional database D = {T1, T2, ..., Tn}, number k, minimum support
threshold θ

output: set TOP of top-k correlated patterns

1 γ ← 0; TOP ← ∅;
2 scan D and find all frequent 1-itemsets I1;
3 for n = 2, · · · do
4 generate candidate itemsets In from In−1;

5 scan D to compute support and Cosine values of all candidate k-itemsets;

6 TOP ← TOP ∪ {correlated n-itemsets};
7 if |TOP | ≥ k then

8 keep only top-k in TOP ;

9 γ ← minimum Cosine value in TOP ;

10 end

11 prune itemsets from In based on SIBP and support;
12 if (maxCos(In) < γ) OR (no frequent n-itemsets) then break;

13 end

5 Experiments

In this section, we present experimental results for two versions of NICoMiner: one

computes all patterns with the correlation above the minimum correlation threshold

and the other finds the top-k correlations. All experiments were performed on a Linux

(ver 2.6.18) server with quad core Xeon 5500 processors and 48 GB of main memory.

For the threshold-based version, we used the support-based pruning as the base-

line. To evaluate the pruning power of each new technique, we added to the baseline

algorithm the pattern growth termination (TPG), and then enhanced it with the single-

item-based pruning (SIBP). The latter represents the full version of the threshold-based

NICOMINER.

For the top-k version, we compared our direct top-k NICOMINER with the naı̈ve

iterative top-k mining, which uses multiple iterations of the threshold-based version,

halving the correlation threshold in each iteration, until the output contains at least k

patterns.

5.1 Synthetic datasets

Synthetic datasets for our experiments were generated by the generator used in [14].

The default parameters are: number of transactions N = 100K , average number of
items per transactionsW = 5, number of distinct items |I| = 1K . The default set of
thresholds for all experiments is as follows: minimum support threshold θ = 0.01%,
and minimum correlation threshold γ = 0.2.
For the correlation-based version of NICOMINER we show the dependence of the

running time on the following parameters: number of transactions, minimum support

threshold, and minimum correlation threshold.

Number of transactions: The results in Figure 1(a) show the comparative per-

formance for 5 different synthetic datasets with number of transactions varying from
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Fig. 1. Performance results for synthetic datasets.

100K to 1M. For all methods, the running time shows linear dependency on N , which

means that the size of a dataset is not the limiting parameter for the performance of

NICOMINER.

Minimum support threshold: In Figure 1(b), we evaluated the performance of

our algorithm for various minimum support threshold values. As the threshold be-

comes lower, frequency-based pruning deteriorates exponentially. Adding TPG makes

the baseline algorithm about two times faster, but the performance still degrades for low

support thresholds. On the other hand, the full version of NICOMINER demonstrates

consistently high performance. For the lowest minimum support threshold 0.003%,
our algorithm is more than an order of magnitude faster than two other methods. This

demonstrates the main power of our algorithm, which is meant for finding correlated

patterns with low supports.

Minimum correlation threshold: In Figure 1(c), we show the effect of the mini-

mum correlation threshold. Frequency-based pruning does not depend on the minimum

correlation threshold, since there is no pruning based on correlation values. The termi-

nation of pattern growth (TPG) cannot be applied before all correlations at some level

has been evaluated. For the largest correlation threshold γ = 0.3, the algorithm termi-
nates after level 2 (all 2-itemsets are below threshold), while for the lowest correlation

threshold γ = 0.1, it continues up to level 4. This explains the difference in the running
time. For γ = 0.1, the full NICOMINER also stops at level 4, however it generates
much less candidates due to the high pruning power of SIBP.
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Fig. 2. Performance results for real datasets.

Top-k: In Figure 1(d), we compare the iterative and the direct top-k correlationmin-

ing for various values of k. Both approaches used all pruning properties for maximum

performance. As expected, the direct approach was faster than the iterative approach.

The gap in performance becomes bigger as k grows. This is because more iterations are

performed by the iterative method before the output contains at least k patterns.

5.2 Real datasets

We tested NICOMINER applying the market basket concept to three real-life datasets.

The performance results are presented in Figure 2. In Figure 2(a) we compare the effi-

ciency of different pruning methods with the baseline pruning by support, and in Figure

2(b) we compare the direct top-k version with the iterative top-k mining.

1. The GROCERIES dataset [6, 7] (9, 800 transactions) represents 1-month of the
point-of-sale transactions in the local grocery store. This dataset is comparatively

sparse: the number of frequent itemsets is low even for the minimum support thresh-

old as low as 0.05%. Nevertheless, for θ = 0.05% and γ = 0.10 our algorithm
is 35 times faster than the baseline support-based computation. This performance

gain for such relatively small dataset shows the potential of our method for typical

market basket applications.

2. The DBLP dataset [1] is a set of computer science bibliography. In our experiments,

we used its subset DBLP AUTHORS (72K citations) generated in [15], with publi-
cations in fields of databases, data mining and information retrieval.We regard each

paper as a transaction and each author as an item. The correlation here describes

the degree of the collaboration inside the group of authors. For θ = 0.007% and
γ = 0.3, NICOMINER is 20 times faster than the baseline method.

3. The COMMUNITIES dataset [12, 13] is a publicly available dataset, which repre-

sents the demographic summarization for 1, 980 US communities. Each attribute
value is a normalized numeric value between 0 and 1, which characterizes the rel-
ative presence of this attribute in a given community. We discretized each value

into 5 equal-sized buckets: with ≤ 0.2 be very low and with > 0.8 be very high.
Each community can be considered as a transaction, and each attribute-value pair
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Table 6. Examples of top correlated patterns for each dataset.

Dataset Pattern sup cos

GROCERIES

{butter milk, yogurt} 84 0.14
{salty snack, popcorn} 22 0.14
{chocolate, candy} 49 0.13
{frankfurter, brown bread} 70 0.12
{sausage, white bread} 71 0.12

DBLP AUTHORS

{Steven M. Beitzel, Eric C. Jensen} 25 1.00
{In-Su Kang, Seung-Hoon Na} 20 0.98
{Ana Simonet, Michel Simonet} 16 0.94
{Caetano Traina Jr., Agma J. M. Traina} 35 0.92
{Claudio Carpineto, Giovanni Romano} 15 0.91

COMMUNITIES

{People with social security income: > 80%,
Age ≥ 65: > 80%} 47 0.76

{Large families (≥ 6): ≤ 20%, White: > 80%} 1017 0.75
{In dense housing (≥ 1 per room): > 80%,
Hispanic: > 80%, Large families (≥ 6): > 80%} 53 0.64
{People with Bachelor or higher degree: > 80%,

Median family income: very high } 60 0.63
{People with investment income: > 80%,

Median family income: very high } 66 0.61

as an item. The correlation here describes which demographic characteristics ap-

pear together in the same communities. COMMUNITIES is an example of a very

dense dataset. The results in Figure 2(a) are for θ = 10% and γ = 0.60. Even for
this very high support threshold, the total number of frequent candidates exceeded

the memory capacity of 40GB, available in our experiments, and the results show

the time before memory crashed: NICOMINER is more than 500 times faster than

the baseline method. Note that using our new algorithm, we were able to lower the

minimum support threshold for this dataset to 1% and obtain the results in just 12
seconds. This demonstrates the ability of NICOMINER to produce highly corre-

lated patterns with low support, which for some datasets is even impossible using

the frequency-based pruning alone.

In Table 6 we show some examples of patterns for each dataset, found among the

top-20 correlations. These examples show that top correlations at low support can be
used not only for such classic applications as product marketing, but also for the demo-

graphics analysis, or for the study of social networks.

For illustration, consider strong correlations extracted from the DBLP AUTHORS

dataset (Figures 3(a)3 and 3(b)4), where the edges label the degree of the pairwise corre-

3 The letters in Figure 3(a) correspond to the following researchers: [A] Hsinchun Chen, [B]

Homa Atabakhsh, [C] Siddharth Kaza, [D] Jennifer Jie Xu, [E] Daniel Dajun Zeng, [F] Jialun

Qin, [G] Yilu Zhou, [H] Chunju Tseng.
4 The letters in Figure 3(b) correspond to the following researchers: [K] David A. Grossman,

[L] Ophir Frieder, [M] Eric C. Jensen, [N] Steven M. Beitzel, [O] Abdur Chowdhury.
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Fig. 3. Strong pairwise correlations in DBLP AUTHORS dataset.

lation between authors. The nodes represent authors with 60 - 70 papers (θ = 0.001%).
The pairwise correlations in Figures 3(a) and 3(b) are typical examples of (a) advisor-

advisee relationships and (b) advanced mutual collaboration in an established collabo-

rative group. Hence, such correlations can be used in studying evolving collaborations.

Note that such strong correlations as in Figure 3(b) rarely take place in groups of au-

thors with very high support. In general, for all datasets used in our experiments, the

most interesting non-trivial correlations are found in the itemsets with low support.

Even though the number of correlated patterns is significantly smaller than the num-

ber of frequent itemsets, some of these patterns carry redundant information. As an ex-

treme case, consider correlation value 1.00. The set of pairwise correlations in Figure
3(b) can be compressed without losing any information by replacing two authorsM and

N which co-authored in 100% of their papers by the joined item (MN ). This removes

significant amount of redundant correlations, as shown in Figure 3(c).

In addition, if the correlation values of the itemset and all its subsets are similar,

they may be considered redundant. However in general, the correlation computed for

a superset is not a redundant information, as can be shown on example in Figure 3(c).

Based on values of pairwise correlations, we expect the correlation {K,M,N,O} to be
at least as strong as {K,L,M,N}, while after computing actual correlations we find out
that Cosine{K,L,M,N}= 0.52, while Cosine{K,M,N,O} is less than 0.1. This shows
that information about mutual relationships of 3 or more objects cannot be deduced

from pairwise correlations, and thus is not a redundant information. The distinction be-

tween redundant and non-redundant information represents the problem which requires

special attention.

6 Related Work

The extension of association rules to correlations was introduced in the pioneeringwork

of Brin et al. [3]. Since then, dozens of correlation measures have been proposed to as-

sess the degree of the correlation. The comprehensive comparison of 21 different corre-

lation measures can be found in [16], where the null invariance was introduced among

other properties such as scaling-invariance and inversion-invariance. The importance of

null-invariance for capturing meaningful correlations in large transactional databases
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was demonstrated later in [8, 17, 19]. In [19], the authors provide a unified definition of

existing null-invariant correlation measures.

An efficient algorithm for correlation mining based on All Confidence and Coher-

ence was proposed in [10, 11]. In both papers, authors use the downward closure (or,

anti-monotonicity) property for pruning. In [19], authors derive an upper bound of Kul-

czynski, which was shown to be effective only for the comparatively high minimum

support thresholds. The techniques based on sampling were recently proposed in [4],

which are much faster, but at the cost of the incompleteness of results. Our approach

works well for all null-invariant measures including Kulczynski and Cosine, which

did not have efficient algorithms for low support, and it produces the complete results.

Top-k correlated pattern mining was mostly developed only for 2-itemsets [22, 23].

Our algorithm produces top-k correlations among itemsets with any number of items.

7 Conclusions & Future Work

In this paper, we addressed the problem of efficient mining of the top correlated pat-

terns, based on any known null-invariant measure. We used Cosine correlation measure

as an example, because it is one of the most widely-used, and at the same time, one

of the most computationally challenging correlation measures. Even though it does not

have the (anti)-monotonicity property, we developed two pruning methods that enabled

an order of magnitude faster running time than the frequent pattern mining approach.

We have shown experimentally that new pruning methods have high efficiency for dis-

covering correlations in the itemsets with low support.

The top-k version of our new algorithm presents a valuable new tool to find top

correlations. It can be easily extended to the problem of finding top-k correlations con-

taining a particular item or pattern of interest (query pattern). This can be achived by

maintaining a min heap data structure that keeps the top-k supersets of the query pat-

tern.

In the future, we plan to address the problem of redundancy. If the correlation in

the itemset is close to the correlation in its superset, it might be enough to output only

the maximal superset pattern instead of reporting all patterns. One way to do it is to

define a summary (or compressed) pattern for correlated patterns as in [20]. It would be

interesting to incorporate the redundancy removal into the mining process, instead of

performing it in a post-processing step.
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