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Abstract. We present a new and efficient algorithm to solve the ’thresh-
old all vs. all’ problem, which involves searching of two strings (with
length N and M respectively) for finding all maximal approximate
matches of length at least S and with up to K differences. The algo-
rithm is based on a novel graph model, and it solves the problem in
time O(NMK2).

1 Introduction

An important problem in the field of string matching is the extraction of exact
and approximate common patterns from a set of strings. In special application
areas such as biological sequence analysis, finding exact patterns only can miss
a great deal of useful information.

The problem can be defined as “all-against-all approximate substring match-
ing” [1,2,4], and is notorius for its computational difficulty [5]. In practice, various
constraints are set for the sought solutions, such as the maximum allowed num-
ber of approximations or “errors” and the minimum length of substrings. Despite
past attempts, this problem is far from being efficiently solved. Our contribution
is a fast algorithm for solving “all-against-all approximate substring matching”
for two strings.

A naive approach to this problem is to exhaustively test each pair of substrings
from s and t respectively. This approach has O(N2M2) time complexity.

The best known solution was proposed by Baeza-Yates and Gonnet in [1,2],
and is widely used [8]. Their solution significantly improved the average time
complexity of the naive approach, by avoiding the examination of repeating
substrings. In their method, the two input strings are organized into a suffix
tree structure, and the order of substrings comparisons is guided by a depth-first
traversal of the suffix tree nodes. The time complexity based on their practical
results lies between NM (best case) and N2M2 (worst case), but closer to N2M2

[4]. Setting threshold criteria bounding the error number, i.e., allowing at most
K differences in an approximate substring match, significantly improves the
performance of the Baeza-Yates and Gonnet algorithm. This is because the value
of K can be directly incorporated into their algorithm to cut down the depth
of the suffix tree traversal. As we verify through experiments, for small values
of K, the Baeza-Yates and Gonnet algorithm performs very well. However, as
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K increases, the number of suffix tree nodes that are examined grows almost
exponentially in K, which is in accordance with Ukkonen [7].

We cast the original problem into the problem of finding “maximal paths” in
a special “matching” graph.1 Via a careful study of this graph, we are able to
derive interesting and useful properties that help us in devising a higly optimized
depth-first search procedure for finding “maximal paths,” which correspond to
the solutions of the original string problem. Our proposed algorithm runs in
O(NMK2) time, which is a significant improvement over the Baeza-Yates and
Gonnet algorithm. Moreover, we experimentally show that our algorithm scales
linearly (as opposed to quadratically) in K and it outperforms the Baeza-Yates
and Gonnet algorithm by an order of magnitude for bigger values of K. Finally,
our algorithm has an additional nice feature: it reversely depends on the alphabet
size. This is contrary to the behavior of the Baeza-Yates and Gonnet algorithm,
whose running time worsens with the increase of the alphabet size.

2 A Graph Model for the All-Against-All Substring
Matching

Let Σ be a finite alphabet. A sequence of letters a1a2 . . . aN , where ai ∈ Σ is
called a string over Σ. We denote strings with s and t. Given string s, we denote
its i-th letter with s[i], and we denote a substring of s starting at position i and
ending at position j with s[i, j]. Substring s[i, j] has length j − i + 1.

Let the edit distance for two strings s and t be the minimum number of edit
operations needed to transform s into t, as defined in [4] . We say the pair (s, t)
is a K-bounded approximate match if the edit distance between s and t is at
most K.

Problem 1. All error-bounded approximate matches
Input: Strings s and t over alphabet Σ, and positive integers K and S.
Output: All error bounded approximate maximal matches (s[i, j], t[k, l]) such
that (1) the edit distance between s[i, j] and t[k, l] is at most K and (2) the
lengths of both s[i, j] and t[k, l] are at least S.

We solve Problem 1 by casting it to an equivalent problem on graphs induced
by a “matching matrix”.

The matching matrix of s and t (Ms,t) is defined as

Ms,t[i, j] =
{

1 if s[i] = t[j]
0 otherwise.

Based on matching matrix M, we define a weighted directed graph GM with
vertices vij corresponding to the 1-elements of the matrix, and with (directed)
edges defined in a “top-down” and “left-right” fashion as follows: there is an
edge e(vij , vkl) iff i < k and j < l (cf. Fig. 1).

1 The full version of an article can be downloaded from [3].
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Fig. 1. Matching matrix and partial induced graph. Only edges of cost at most 3 are
shown; the directions of the edges are left out.

We define the cost of an edge e(vij , vkl) to be c(vij , vkl) = max(k− i, l−j)−1.
A path in graph GM is a sequence of vertices connected by edges. For a path in
GM, we define two characteristic properties. The match length of path π between
vij and vkl is defined as ML(π) = min(k − i + 1, l − j + 1). The error number,
EN(π), is defined as the sum of all costs of edges in π.

Note that GM is not a dynamic programming (induced) graph (edit graph
[4]); DP graphs have been very well studied in the literature. However, to the
best of our knowledge there is no work that formally studies the properties of
GM graph. Graph GM possesses a very desirable property which is as follows.

Theorem 1. The edit distance between s[i, k] and t[j, l] is equal to the error
number of the cheapest path(s) from vij to vkl in GM.

Problem 2. All paths below threshold
Input: The graph GM for two strings s and t, and positive integers K and S.
Output: All maximal paths with EN ≤ K and with match length at least S.

Based on Theorem 1 we conclude that:

Corollary 1. The problem all bounded approximate matches can be reduced to
the all paths below threshold problem.

We show next how to construct an instance for all paths below threshold from an
instance of all bounded approximate matches.

3 Solving “All Paths Below the Threshold” (APBT)

We outline the logic flow of algorithm APBT, omitting all formal proofs due
to space constraints. In the full version of the paper we give a simple way for
building and storing the matching matrix in linear time and space. As for graph
GM, we never explicitly construct and store it (remaining so linear w.r.t. space).
Rather, as we show, we traverse it by constructing the needed paths “on the fly.”

Path Expansion. We scan the matching matrix in row-major order. When
a vertex of GM is encountered, we initialize a path π with EN(π) = 0 and
ML(π) = 1. The algorithm then builds all the possible expansions of this initial
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path by adding one vertex at a time and by keeping track of the best paths
found so far. As paths are constructed, the algorithm examines each partially
completed path π: if no more vertices can be added without exceeding threshold
K, then we stop the expansion and check whether ML(π) ≥ S. If true, then we
report path π as a solution.

A Single-Step Path Expansion. Since the error number of a path cannot
exceed K, an edge to be appended to a path clearly has to have a cost of at
most K. As a consequence all edges in GM of cost higher than K are excluded
from further consideration. Consider a path π with error number EN(π), which
ends at vertex vij . From the above discussion, it is clear that for a single-step
expansion of π we need to search (in M) for a possible “next vertex” only inside
square ABCD, where A = (i + 1, j + 1), and C = (i + 1 + κ, j + 1 + κ), for
κ = K − EN(π). We call square ABCD the target square for path π at vertex
vij . The area of the target square decreases as the error number accumulated by
π increases.

On the first sight, for any vertex vij in GM there are at most (κ+1)× (κ+1)
outgoing edges to be considered. We show how to reduce the number of edges for
consideration. For this, we introduce the following definitions regarding diagonals
in the matching matrix M.

Let (i, j) be an arbitrary cell in M. (1) The (i, j)-main diagonal for M is the
sequence of (i+p, j +p)-cells in M, where 0 ≤ p ≤ min{M − i, N − j}. (2) Let q
be a value between 0 and N − j. The (i, j)-q-upper diagonal is the (i, j + q)-main
diagonal. (3) Let r be a value between 0 and M − i. The (i, j)-r-lower diagonal
is the (i + r, j)-main diagonal.

Let π be a path in GM ending at vertex vij and with EN(π) ≤ K. Now,
assume that vkl and vmn are two vertices in the target square for π at vij , which
lie on one of the upper diagonals w.r.t. vij . In terms of edge cost it means, that
c(vij , vkl) = l − j − 1, and c(vij , vmn) = n − j − 1. Now, assume that i < k < m
and j < l < n. This means that if we build an edge from vij directly to vmn, we
“ignore” vertex vkl, and unnecessarily increase EN(π). Rather, we better expand
path π to vkl and later on, in the next round, continue to vmn. Practically, this
means that: if we find a vertex vkl on an upper diagonal of the target square,
then we can exclude from the search for single-step expansion all the triangular
area of the target square, which is bounded by (1) row k (exclusive), and (2)
the upper diagonal passing through vkl (inclusive). Symmetrically, if vertex vkl

lies on some lower diagonal, then we can exclude from the search for expansion
all the triangular area of the target square, which is bounded by (1) column l
(exclusive), and (2) the lower diagonal passing through vkl (inclusive). If vertex
vkl lies on the main diagonal of the target square, then both triangular areas are
excluded at once.

In the full paper, we strengthen the above result by showing that we can safely
exclude the row k (or column l) from the search for path expansion.

Optimization 1. In search for expansions, we scan the cells of the target square
in a diagonal-major order, that is: first scan the main diagonal, possibly excluding
parts of the target square from further scan. Next, scan the remaining of the target
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square through the 1-upper diagonal and the 1-lower diagonal, possibly excluding
other areas of the target square. Then, continue with the 2-upper diagonal and
the 2-lower diagonal and so on.

Observe that, the scanning of a target square in this order guarantees that the
exclusion of triangular areas takes place as early as possible.

Corollary 2. Single path extension from an arbitrary vertex vij in GM is per-
formed at most once for each of the 2K + 1 diagonals surrounding vij, and
therefore the number of possible extensions for vij is bounded by 2K + 1.

Corollary 3. An arbitrary cell of a matrix M[i, j] is accessed at most once from
each of 2K + 1 diagonals. This also implies that an arbitrary vertex vij serves
as a path extension for at most 2K + 1 vertices.

Interdependence of Paths in GM. We show next how the information from
previously explored paths can be reused.

Let π1 be a previously explored path, which connects vertex vij with vmn. Let
π2 be another path that we are currently exploring, which originates in vkl, and is
built up to vertex vmn. Clearly, if EN(π2) ≥ EN(π1) and ML(π2) ≤ ML(π1),
we can omit the further expansion of π2. An illustration is given in Fig. 1,
where path v01, v13, v24, v46 serves as π1, which is explored earlier in a row-major
order, and path v04, v46 serves to exemplify π2. Clearly, path π2 will only offer a
sub-solution to the solution corresponding to π1, since the substring t[4, 6] is a
substring of t[1, 6].

Thus, if we remember the smallest error number among all paths, which
reached a particular vertex, then at each vertex, we will do at most (K + 1)
expansions. The row major processing order ensures, that if ML is defined by
the length of the vertical substring, then ML(π2) ≤ ML(π1). This is because
both paths end at the same vertex, and π2 starts at the same or later (greater)
row than π1. Notably, if we repeat the computation in a column-major order,
all paths where ML was defined by the horizontal substring will now be defined
by the vertical substring, thus ML of the later path will again be less than ML
of the previously built path. For more detailed explanations see the full version.

The union of the solution sets of the two runs of the algorithm yields the final
solution set.

From the above, we can conclude, that each vertex in GM is expanded at most
2(K + 1) times.

Theorem 2. The All Paths Below Threshold algorithm has a time complexity
of O(NMK2).

Proof. Since during path extension, any cell is accessed only once from at
most 2K + 1 vertices (cf. Corollary 3) and each of these cells, if it is a vertex, is
expanded at most 2(K +1) times (cf. discussion), the upper bound for traversing
a particular cell of the matrix is at most 2(K + 1)(2K + 1). Since there are at
most MN many cells in M, the total time complexity is O(NMK2). ��
The pseudocode of our algorithm is given below.



A New Algorithm for Fast All-Against-All Substring Matching 365

All paths below threshold(M,K,S) Expand path(π)
scan M in row major order if ML(π) ≥ S then
if M[i, j] = 1 then add π to the set of solutions
create a single-vertex vij path π
EN(π) = 0 if a path with error number EN(π)
Expand path(π) has already been extended through

vkl then abort π and return
scan M in column major order
if M[i, j] = 1 then Do a single-step expansion (if possible) of π
create a single-vertex vij path π creating new expanded path πexp

EN(π) = 0
Expand path(π) Expand path (πexp)

4 Experimental Evaluation

We present an experimental evaluation of our All Paths Below Threshold algo-
rithm as it compares with the algorithm of Baeza-Yates and Gonnet [2].

We implemented Gusfield’s variant of the Baeza-Yates and Gonnet algorithm
[4].2 We optimized it using Ukkonen’s error bounded dynamic programming
method [6] We abbreviate this optimized variant by BY G + U .

The running time was tested on the same 1.2 GHz PC with 312 MB of RAM.
Fig. 2 represents the running time of BY G+U and APBT on a pair of RNA

sequences belonging to viruses from the same family, and where the minimum
length of matches is set to S = 50. Notably the APBT algorithm outperforms
the BY G+U algorithm for values of K ≥ 6. We also show the size of the output,
and this clearly shows that in order to obtain any output at all, even for similar
RNA sequences, one has to set a bigger or equal to 6 value of K.
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Fig. 2. Running time for two viral RNA sequences (30,000 bp): Human coronavirus
229E (27317 bp) and Human coronavirus OC43 (30738 bp) from [9]. The figure on the
right is a zooming of the figure on the left for K < 8.

Interestingly, for K ≤ 5, the BY G + U algorithm outperforms the APBT
algorithm. This is because the BY G+U algorithm benefits from the early stop of
deeply going in the suffix trees, when the accumulated error exceeds K. However,
2 The original code of [2] is unfortunately not available anymore.
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as K grows the BY G+U algorithm goes deeper in the suffix trees, and we observe
an almost exponential in K increase in the running time. In contrast, APBT
scales on average linearly with K.

Also, we emphasize the fact that for alphabets of bigger size the APBT algo-
rithm performs better than the BY G+U algorithm. The performance of APBT
is orders of magnitute better than BY G+U for protein sequences with alphabet
size of 20. This can be explained by the greater “bushiness” of the suffix trees
(used by BY G + U) close to the root, and by the fact that with the increase
of the alphabet size, our matching matrix becomes much sparser. The APBT
algorithm behaves so much better than the BY G + U algorithm that we had to
plot their behavior in different scales (cf. Fig. 3).
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Fig. 3. Effect of alphabet size (random strings pairs of length 1000)
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