
Lecture 8

Given 2 input strings S1 and S2, and the
scoring matrix, find an alignment with the
maximum possible score

• The scoring matrix includes also the gap scoring
scheme

• The optimality of an alignment heavily depends on the
scoring matrix

S1 A G C A

S2 A C T A

+1 – for match
-1 – for mismatch
-2 – for indel

S1 A G C A

S2 A C T A

+1 -1 -1 +1

Total best score: 0

S1 A G C A

S2 A C T A

+1 – for match
-1 – for mismatch
-1 – for indel

S1 A G C ---- A

S2 A ---- C T A

+1 -1 +1 -1 +1

Total best score: 1

C-DNA example
• In Eukaryotes, a protein-coding gene is made of alternating

exons (expressed sequences) and introns (intervening
sequences), which do not code for a protein

• The number of exons is generally modest (4-20), but the
lengths of introns can be huge comparing to the length of
introns

C-DNA example
• If we extract m-RNA from the working cell at any stage of its

working cycle, and then we transcribe it backwards into
DNA by using viral reverse transcriptase, we obtain c-DNA

• Now we want to align the obtained c-DNA with the region
of genome in order to locate the gene and to study the
mechanism of splicing

 If the spaces are penalized on the unit bases,
that would align c-DNA substrings close
together rather than allowing large gaps
corresponding to introns

The number of mismatches in the aligned
regions should not be large, since these
regions are just a transcript of the original
genomic DNA

The following scoring scheme solves the
problem:
• Constant gap weight

• Heavy penalty for mismatches

The optimal alignment can be induced to cut
up c-DNA to match the exons on the DNA
sequence they have originated from

 If we only want to find the sequences in the database,
which are highly similar to a new sequence, we can
enforce an additional constraint – the number of
insertions, deletions and substitutions not larger than
some threshold value k

 In this case, we can compute the values of the dynamic
programming only in a 2k+1 strip around the main
diagonal

 The Miller-Myers algorithm could work well (the edit
distance is small)

Since the mutational events include multiple
genome rearrangements (insertions, deletions,
inversions), in addition to mutations, a global
alignment of distantly related genomes is of a
little biological value

However, if we would be able to align 2
genomes of the same species (almost identical),
we could reveal the sites of polymorphism

 In order to align 2 genomes, 1,000,000,000
nucleotides each, by a traditional dynamic
programming, it will require 10 days of
computation on a modern computer system

The dynamic programming is not easily
parallelizable, since we cannot start to
compute next value until 3 required previous
values have been computed

A heuristic method is an algorithm that gives
only approximate solution to a given problem.

Sometimes we are not able to formally prove
that this solution actually solves the problem,
but heuristic methods are commonly used
because they are much faster than exact
algorithms.

3 main algorithmic tools
• Suffix tree
• Longest increasing subsequence
• Dynamic programming

3 steps
• Find maximal unique matches – MUMs
• Find the longest sequence of MUMs
• Fill the gaps between MUMs using dynamic

programming alignment

Find maximal unique matches – MUMs
• A MUM is a substring which occurs exactly once in S1

and once in S2, and is not contained in any other such
substring

• We can find maximal repeating substrings from a suffix
tree

• Among these, take only the nodes which have exactly 2
children – 1 representing some suffix of S1, and 1
representing some suffix of S2

• Output MUMs in form of pairs of start positions
(position in S1, position in S2)

1 2 3 4 5 6 7 8

S1 g a a g c a c c

S2 a g a a a t a c

ROOT

A

A

A…3

G…2

T…4

C C…6

…7
G A…1

C…3T…5

C

A…5

C…7

…8…8

G
AA A…2

G…1
C…4

T…6

Build a generalized suffix
tree for S1 and S2

1 2 3 4 5 6 7 8

S1 g a a g c a c c

S2 a g a a a t a c

ROOT

A

A

A…3

G…2

T…4

*C C…6

…7
**G A…1

C…3T…5

C

A…5

C…7

…8…8

G
***AA A…2

G…1
C…4

T…6

*C

**G

***AA

Maximal
unique
matches:

1 2 3 4 5 6 7 8

S1 g a a g c a c c

S2 a g a a a t a c

ROOT

A

A

A…3

G…2

T…4

*C C…6

…7
**G A…1

C…3T…5

C

A…5

C…7

…8…8

G
***AA A…2

G…1
C…4

T…6

*C

**G

***AA

Maximal
unique
matches:

Output of
step 1:
(6,7)
(3,1)
(1,2)

 Find a longest sequence of MUMs, such that positions
in both S1 and S2 are increasing and the MUMs are not
overlapping

• If we sort MUMs by positions of S1, in order to find a longest
sequence of ordered positions in MUMmers of both input
strings, we can solve the Longest Increasing Subsequence
problem for positions of S2

• The LIS problem can be solved in time K log K, where K is a
number of MUMs

• Even by a routine Dynamic programming, for finding LIS for a
sequence of K positions we need O(K2) operations, and K is much
smaller than N – the length of the compared genomes

 Suppose the sequence of MUMs is represented by the following
pairs:

(1,7) (3,3) (4,8) (5,2) (7,6) (8,9)
Then finding LIS of positions in S2 is the same as finding a longest common

subsequence between (2,3,6,7,8,9) and (7,3,8,2,6,9)

7 3 8 2 6 9

0 0 0 0 0 0 0

2 0 0 0 0 1 1 1

3 0 0 1 1 1 1 1

6 0 0 1 1 1 2 2

7 0 1 1 1 1 2 2

8 0 1 1 2 2 2 2

9 0 1 1 2 2 2 3

The longest increasing
subsequence (not unique) is
(3,8,9)

And the resulting longest set
of MUMs is
(3,3) (4,8) (8,9)

Align the MUMs as exact matches, and fill in
the remaining positions by the locally applied
dynamic programming
For the above example with S1=gaagcacc and

S2=agaaatac the resulting MUMs are (1,2) (6,7)

1 2 3 4 5 6 7 8

S1 g a a g c a c c

S2 a g a a a t a c

S1 - g a a g c a c c

S2 a g a a a t a c -

The final alignment

More often, we want to find the local regions
of high similarity, rather than the overall
sequence scores

The time is quadratic, and the result is highly
influenced by the scoring scheme

 Suppose P matches a substring T1 of T with at
most k errors (insertions, deletions,
substitutions). Then T1 must contain at least 1
interval of length r=M/(k+1) that exactly matches
one of the r-length substrings of P.

• Proof. If we partition P into consecutive r-length regions,
and align P to T1, then there would be k+1 sub-alignments.
If each of these sub-alignments were to contain at least 1
error, then there would be more than k errors in total.

 Find a local alignment of P to T with an optimal score,
but with an additional constraint that there would not
be more than k errors between P and the aligned
region T1 of T.

1. Partition P into k+1 consecutive substrings

2. Find the set of the possible locations of alignment P to the
part of T, by exactly matching each of the k+1 substrings to T

3. Extend each found match from both ends to the full length of
P using dynamic programming (computing 2k+1 – strip around
the main diagonal). If the resulting alignment has up to k
errors, report it

 Proven that:
• Algorithm BYP runs in O(N) time for k<=O(M/logσM), where σ is

the size of the alphabet

• For a DNA sequence (σ =4) of length 64, k can be as high
as 64/4=16 or 25%

• For a protein sequence (σ=20) of length 400, k can be as
high as 400/2=200 or 50%

 In practice, r=M/(k+1) should be at least 9 for DNA
and at least 5 for proteins to be efficient. This is
because the asymptotic O(M/logσM) contains an
unknown constant

• For DNA of length 100 – no more than 9 errors, or 9%

 If pattern P matches some substring T1 of T
with α (for example 30%) of identity, and if we
partition P=P’P’’ and T1=T’T’’, then either P’ is
30% identical with T’ or P’’ is 30% identical
with T’’

• Accept without the proof (the proof is complex)

1. Partition P into r consecutive intervals

2. For each interval (the length is small) produce
α-neighborhoods of it, meaning produce the
set of all different substrings which match
each interval I with α % identity.

For example if I=aba and α=60, then the α-neighborhood
of I should include 2 matches and at most 1 error:
[bba, aaa, abb, aaba, abaa, baba, abba, abab, ba, aa,
ab]

3. Produce a condensed α-neighborhood by removing all
substrings which are the prefix of some other substring
in the neighborhood set:

• For the previous example:
 from [bba, aaa, abb, aaba, abaa, baba, abba, abab, ba, aa, ab]

 to [bba, aaa, aaba, abaa, baba, abba, abab]

4. Find all locations of substrings in T which exactly match
the substrings from a condensed neighborhood

Myers shows that this step can be implemented to run in
time sub-linear in N for α>=30% (DNA) or for α>=44% (Protein)

5. The matches obtained in step 4 form a set of
surviving matches. Each time, we double in
length the region of the surviving match trying
to extend it to the right or to the left and
checking if there is still 30% identity with the
corresponding interval of P

6. All of the checking runs in a sublinear time for
the above values of α (α>=30% (DNA) or for
α>=44% (Protein)).

accgaagc

accg

ac cg

acgc

aa gc

T ab gc

α-matches – the surviving
regions of size M/4

accgaagc

accg

ac cg

acgc

aa gc

T

Extend to
the right

Extend to
the left

The number of
surviving regions
drops faster than the
exponential increase
in the size of these
regions

Given two strings S1 and S2, a segment pair is a
pair of equal length substrings of S1 and S2,
aligned without gaps.

A locally maximal segment is a segment whose
alignment score (without gaps) cannot be
improved by extending it or shortening it.

A maximum segment pair (MSP) in S1 and S2 is a
segment pair with the maximum score over all
segment pairs in S1, S2.

When comparing all the sequences in the
database against the query, BLAST attempts to
find all the database sequences that when paired
with the query contain an MSP above some cutoff
score S. We call such a pair, a hi-scoring pair
(HSP).

We choose S such that it is unlikely to find a
random sequence in the database that achieves a
score higher than S when compared with the
query sequence.

 Given a length parameter w and a threshold parameter t, BLAST finds all
the w-length substrings (called words) of database sequences that align
with words from the query with an alignment score higher than t. Each
such hot spot is called a hit in BLAST.

 Instead of requiring words to match exactly, BLAST declares that a word hit
has been made if the word taken from the database has a score of at least
t when a substitution matrix is used to compare the word from the query.
This strategy allows the word size (w) to be kept high (for speed), without
sacrificing sensitivity.

 It is usually recommended to set the parameter w to values of 3 to 5 for
amino acids, and ∼ 12 for nucleotides. Thus, t becomes the critical
parameter determining speed and sensitivity, and w is rarely varied.

 If the value of t is increased; the number of background word hits will go
down and the program will run faster. Reducing t allows more distant
relationships to be found.

 In the next step, each hit is extended to a locally
maximal segment and if its score is above S, i.e. if this
sequences pair is HSP, we report these segment

 Since pair score matrices typically include negative
values, extension of the initial w-mer hit may increase
or decrease the score.

 Accordingly, the extension of a hit can be terminated
when the reduction in score (relative to the maximum
value encountered) exceeds certain score drop-off
threshold.

1. When considering the dynamic programming matrix to align two
strings, we search along each diagonal for two w-length words such
that the distance between them is ≤ A and their score is ≥ T. T can be
lower than in the previous algorithm.

Future expansion is done only to such pairs of hits.

2. In the second stage we want to allow local alignments with indels.
We allow two local alignments from different diagonals to merge
into a new local alignment composed of the first local alignment
followed by some indels and then the second local alignment. This
local alignment is essentially a path in the dynamic programming
matrix, composed of two diagonal sections and a path connecting
them which may contain gaps. We allow local alignments from
different diagonals to merge as long as the resulting alignment has a
score above some threshold.

The improved version of BLAST is about 3 times faster than the original
algorithm due to much less expansions made (only two-hit words
are expanded).

The mutations happen at the level of DNA

The selection works at the level of proteins

• Aminoacid leucine can be coded by 6 different codons:

UUA, UUG, CUU, CUC, CUG, CUA

So if more than 50 percent of nucleotides mutate

(UUA->CUG) then this codon still encodes leucine

 The unit matrix

 The genetic code matrix:
• the entry equals the number

of minimal base substitutions
needed to convert a codon of
amino acid i to a codon of
amino acid j. We disregard
here the importance of
chemical properties of the
amino acids, that evidently
influence the chances for
their successful substitution,
like their hydrophobicity,
charge or size.

For example,

distance(Phe, Leu)=1

distance(Phe, Gly)=3

distance(Phe,Phe)=0

 qij=pi*pj*eλscore(i,j)

qij - the probability of aminoacid i to be replaced with aminoacid j

pi*pj - the probability of aminoacid i to be replaced by aminoacid j by
chance

econst - reflects how the random probability changes with the time
(each time the DNA duplicates, the population of sequences
growths exponentially)

How often the aminoacid i is replaced by aminoacid j during this
exponential growth, depends on the intrinsic properties of the pair
of aminoacids, which are reflected in the score(i,j) value

qij=pi*pj*eλscore(i,j)

From here:
score(i,j)=1/ λ * ln [qij/ (pi*pj)]

where 1 / λ is some scaling factor

If the probability of aminoacid i to be replaced by aminoacid j is
the same as the random probability, the score will be 0

If it is less than the randomly expected, the score will be negative
If it is much more than expected by chance, the score will be a

large positive value

A R N D C

A 9867 2 9 10 3

R 1 9913 1 0 1

N 4 1 9822 36 0

D 6 0 42 9859 0

C 1 1 0 0 9973

Based on the number of the substitutions from the pairwise alignment of the closely
related proteins, which are not more than 1% different

This is called PAM-1 substitution matrix

The values for PAM-5 are obtained by multiplying the values in PAM-1 5 times by the
same matrix

By this we extrapolate the frequency of substitutions in a closely related proteins to
the distanly related, which does not really work in practice

AABCDA...BBCDA

DABCDA.A.BBCBB

BBBCDABA.BCCAA

AAACDAC.DCBCDB

CCBADAB.DBBDCC

AAACAA...BBCCC

The frequency of the substitutions in the conserved blocks of distantly
related proteins, put into a multiple alignment

BLOSUM-65 is the matrix built on the set of proteins which are no more than
65% similar

BLOSUM-50 is for more similar proteins than BLOSUM-65
PAM-250 is for more distant proteins than PAM-50

Frequency:
• f(i,j)=count(i,j)/[count(i)*count(j)]

The entry of the matrix:
• Score(i,j)=log f(i,j)

