
Lecture 8



Given 2 input strings S1 and S2, and the 
scoring matrix, find an alignment with the 
maximum possible score

• The scoring matrix includes also the gap scoring 
scheme

• The optimality of an alignment heavily depends on the 
scoring matrix



S1 A G C A

S2 A C T A

+1 – for match
-1 – for mismatch
-2 – for indel

S1 A G C A

S2 A C T A

+1 -1 -1 +1

Total best score: 0



S1 A G C A

S2 A C T A

+1 – for match
-1 – for mismatch
-1 – for indel

S1 A G C ---- A

S2 A ---- C T A

+1 -1 +1 -1 +1

Total best score: 1



C-DNA example
• In Eukaryotes, a protein-coding gene is made of alternating 

exons (expressed sequences) and introns (intervening 
sequences), which do not code for a protein

• The number of exons is generally modest (4-20), but the 
lengths of introns can be huge comparing to the length of 
introns



C-DNA example
• If we extract m-RNA from the working cell at any stage of its 

working cycle, and then we transcribe it backwards into 
DNA by using viral reverse transcriptase, we obtain c-DNA

• Now we want to align the obtained c-DNA  with the region 
of genome in order to locate the gene and to study the 
mechanism of splicing



 If the spaces are penalized on the unit bases, 
that would align c-DNA substrings close 
together rather than allowing large gaps 
corresponding to introns

The number of mismatches in the aligned 
regions should not be large, since these 
regions are just a transcript of the original 
genomic DNA



The following scoring scheme solves the 
problem:
• Constant gap weight

• Heavy penalty for mismatches

The optimal alignment can be induced to cut 
up c-DNA to match the exons on the DNA 
sequence they have originated from



 If we only want to find the sequences in the database, 
which are highly similar to a new sequence, we can 
enforce an additional constraint – the number of 
insertions, deletions and substitutions not larger than 
some threshold value k

 In this case, we can compute the values of the dynamic 
programming only in a 2k+1 strip around the main 
diagonal 

 The Miller-Myers algorithm could work well (the edit 
distance is small)



Since the mutational events include multiple 
genome rearrangements (insertions, deletions, 
inversions), in addition to mutations, a global 
alignment of distantly related genomes is of a 
little biological value

However, if we would be able to align 2 
genomes of the same species (almost identical), 
we could reveal the sites of polymorphism



 In order to align 2 genomes, 1,000,000,000 
nucleotides each, by a traditional dynamic 
programming, it will require 10 days of 
computation on a modern computer system

The dynamic programming is not easily 
parallelizable, since we cannot start to 
compute next value until 3 required previous 
values have been computed



A heuristic method is an algorithm that gives 
only approximate solution to a given problem.

Sometimes we are not able to formally prove 
that this solution actually solves the problem, 
but heuristic methods are commonly used 
because they are much faster than exact 
algorithms.



3 main algorithmic tools
• Suffix tree
• Longest increasing subsequence
• Dynamic programming

3 steps
• Find maximal unique matches – MUMs
• Find the longest sequence of MUMs
• Fill the gaps between MUMs using dynamic 

programming alignment



Find maximal unique matches – MUMs
• A MUM is a substring which occurs exactly once in S1 

and once in S2, and is not contained in any other such 
substring

• We can find maximal repeating substrings from a suffix 
tree

• Among these, take only the nodes which have exactly 2 
children – 1 representing some suffix of S1,  and 1 
representing some suffix of S2

• Output MUMs in form of pairs of start positions 
(position in S1, position in S2)



1 2 3 4 5 6 7 8

S1 g a a g c a c c

S2 a g a a a t a c

ROOT

A

A

A…3

G…2

T…4

C C…6

…7
G A…1

C…3T…5

C

A…5

C…7

…8…8

G
AA A…2

G…1
C…4

T…6

Build a generalized suffix 
tree for S1 and S2



1 2 3 4 5 6 7 8

S1 g a a g c a c c

S2 a g a a a t a c

ROOT

A

A

A…3

G…2

T…4

*C C…6

…7
**G A…1

C…3T…5

C

A…5

C…7

…8…8

G
***AA A…2

G…1
C…4

T…6

*C

**G

***AA

Maximal 
unique 
matches:



1 2 3 4 5 6 7 8

S1 g a a g c a c c

S2 a g a a a t a c

ROOT

A

A

A…3

G…2

T…4

*C C…6

…7
**G A…1

C…3T…5

C

A…5

C…7

…8…8

G
***AA A…2

G…1
C…4

T…6

*C

**G

***AA

Maximal 
unique 
matches:

Output of 
step 1:
(6,7)
(3,1)
(1,2)



 Find a longest sequence of MUMs, such that positions 
in both S1 and S2 are increasing and the MUMs are not 
overlapping

• If we sort MUMs by positions of S1, in order to find a longest 
sequence of ordered positions in MUMmers of both input 
strings, we can solve the Longest Increasing Subsequence 
problem for positions of S2

• The LIS problem can be solved in time K log K, where K is a 
number of MUMs

• Even by a routine Dynamic programming, for finding LIS for a 
sequence of K positions we need O(K2) operations, and K is much 
smaller than N – the length of the compared genomes



 Suppose the sequence of MUMs is represented by the following 
pairs:

(1,7) (3,3) (4,8) (5,2) (7,6) (8,9)
Then  finding LIS of positions in S2 is the same as finding a longest common 

subsequence between (2,3,6,7,8,9) and (7,3,8,2,6,9)

7 3 8 2 6 9

0 0 0 0 0 0 0

2 0 0 0 0 1 1 1

3 0 0 1 1 1 1 1

6 0 0 1 1 1 2 2

7 0 1 1 1 1 2 2

8 0 1 1 2 2 2 2

9 0 1 1 2 2 2 3

The longest increasing 
subsequence  (not unique) is 
(3,8,9)

And the resulting  longest set 
of MUMs is 
(3,3) (4,8) (8,9)



Align the MUMs as exact matches, and fill in 
the remaining positions by the locally applied 
dynamic programming
For the above example with S1=gaagcacc and 

S2=agaaatac the resulting MUMs are (1,2) (6,7)

1 2 3 4 5 6 7 8

S1 g a a g c a c c

S2 a g a a a t a c

S1 - g a a g c a c c

S2 a g a a a t a c -

The final alignment



More often, we want to find the local regions 
of high similarity, rather than the overall 
sequence scores

The time is quadratic, and the result is highly 
influenced by the scoring scheme



 Suppose P matches a substring T1 of T with at 
most k errors (insertions, deletions, 
substitutions). Then T1 must contain at least 1 
interval of length r=M/(k+1) that exactly matches 
one of the r-length substrings of P.

• Proof. If we partition P into consecutive r-length regions, 
and align P to T1, then there would be k+1 sub-alignments. 
If each of these sub-alignments were to contain at least 1 
error, then there would be more than k errors in total. 



 Find a local alignment of P to T with an optimal score, 
but with an additional constraint that there would not 
be more than k errors between P and the aligned 
region T1 of T.

1. Partition P into k+1 consecutive substrings

2. Find the set of the possible locations of alignment P to the 
part of T, by exactly matching each of the k+1 substrings to T

3. Extend each found match from both ends to the full length of 
P using dynamic programming (computing 2k+1 – strip around 
the main diagonal). If the resulting alignment has up to k 
errors, report it



 Proven that:
• Algorithm BYP runs in O(N) time for k<=O(M/logσM), where σ is 

the size of the alphabet

• For a DNA sequence (σ =4) of length 64, k can be as high 
as 64/4=16 or 25%

• For a protein sequence (σ=20) of length 400, k can be as 
high as 400/2=200 or 50%

 In practice, r=M/(k+1) should be at least 9 for DNA 
and at least 5 for proteins to be efficient. This is 
because the asymptotic O(M/logσM) contains an 
unknown constant

• For DNA of length 100 – no more than 9 errors, or 9%



 If pattern P matches some substring T1 of T 
with α (for example 30%) of identity, and if we 
partition P=P’P’’ and T1=T’T’’, then either P’ is 
30% identical with T’ or P’’ is 30% identical 
with T’’

• Accept without the proof (the proof is complex)



1. Partition P into r consecutive intervals

2. For each interval (the length is small) produce 
α-neighborhoods of it, meaning produce the 
set of all different substrings which match 
each interval I with α % identity.

For example if I=aba and α=60, then the α-neighborhood 
of I should include 2 matches and at most 1 error: 
[bba, aaa, abb, aaba,  abaa, baba, abba, abab, ba, aa, 
ab]



3. Produce a condensed α-neighborhood by removing all 
substrings which are the prefix of some other substring 
in the neighborhood set:

• For the previous example: 
 from [bba, aaa, abb, aaba,  abaa, baba, abba, abab, ba, aa, ab] 

 to [bba, aaa, aaba, abaa, baba, abba, abab]

4. Find all locations of substrings in T which exactly match 
the substrings from a condensed neighborhood

Myers shows that this step can be implemented to run in 
time sub-linear in N for α>=30% (DNA) or for α>=44% (Protein)



5. The matches obtained in step 4 form a set of 
surviving matches. Each time, we double in 
length the region of the surviving match trying 
to extend it to the right or to the left and 
checking if there is still 30% identity with the 
corresponding interval of P

6. All of the checking runs in a sublinear time for 
the above values of α (α>=30% (DNA) or for 
α>=44% (Protein)).



accgaagc

accg

ac cg

acgc

aa gc

T ab gc

α-matches – the surviving 
regions of size M/4



accgaagc

accg

ac cg

acgc

aa gc

T

Extend to 
the right

Extend to 
the left

The number of 
surviving regions 
drops faster than the 
exponential increase 
in the size of these 
regions



Given two strings S1 and S2, a segment pair is a 
pair of equal length substrings of S1 and S2, 
aligned without gaps. 

A locally maximal segment is a segment whose 
alignment score (without gaps) cannot be 
improved by extending it or shortening it. 

A maximum segment pair (MSP) in S1 and S2 is a 
segment pair with the maximum score over all 
segment pairs in S1, S2.



When comparing all the sequences in the 
database against the query, BLAST attempts to 
find all the database sequences that when paired 
with the query contain an MSP above some cutoff 
score S. We call such a pair, a hi-scoring pair 
(HSP). 

We choose S such that it is unlikely to find a 
random sequence in the database that achieves a 
score higher than S when compared with the 
query sequence.



 Given a length parameter w and a threshold parameter t, BLAST finds all 
the w-length substrings (called words) of database sequences that align 
with words from the query with an alignment score higher than t. Each 
such hot spot is called a hit in BLAST.

 Instead of requiring words to match exactly, BLAST declares that a word hit 
has been made if the word taken from the database has a score of at least 
t when a substitution matrix is used to compare the word from the query. 
This strategy allows the word size (w) to be kept high (for speed), without 
sacrificing sensitivity. 

 It is usually recommended to set the parameter w to values of 3 to 5 for 
amino acids, and ∼ 12 for nucleotides. Thus, t becomes the critical 
parameter determining speed and sensitivity, and w is rarely varied. 

 If the value of t is increased; the number of background word hits will go 
down and the program will run faster. Reducing t allows more distant 
relationships to be found.



 In the next step,  each hit is extended to a locally 
maximal segment and if its score is above S, i.e. if this 
sequences pair is HSP, we report these segment

 Since pair score matrices typically include negative 
values, extension of the initial w-mer hit may increase 
or decrease the score. 

 Accordingly, the extension of a hit can be terminated 
when the reduction in score (relative to the maximum 
value encountered) exceeds certain score drop-off 
threshold.



1. When considering the dynamic programming matrix to align two 
strings, we search along each diagonal for two w-length words such 
that the distance between them is ≤ A and their score is ≥ T. T can be 
lower than in the previous algorithm. 

Future expansion is done only to such pairs of hits.

2. In the second stage we want to allow local alignments with indels. 
We allow two local alignments from different diagonals to merge 
into a new local alignment composed of the first local alignment 
followed by some indels and then the second local alignment. This 
local alignment is essentially a path in the dynamic programming 
matrix, composed of two diagonal sections and a path connecting 
them which may contain gaps. We allow local alignments from 
different diagonals to merge as long as the resulting alignment has a 
score above some threshold. 

The improved version of BLAST is about 3 times faster than the original 
algorithm due to much less expansions made (only two-hit words 
are expanded).



The mutations happen at the level of DNA

The selection works at the level of proteins

• Aminoacid leucine can be coded by 6 different codons:

UUA, UUG, CUU, CUC, CUG, CUA

So if more than 50 percent of nucleotides mutate 

(UUA->CUG) then this codon still encodes leucine



 The unit matrix

 The genetic code matrix: 
• the entry equals the number 

of minimal base substitutions 
needed to convert a codon of 
amino acid i to a codon of 
amino acid j. We disregard 
here the importance of 
chemical properties of the 
amino acids, that evidently 
influence the chances for 
their successful substitution, 
like their hydrophobicity, 
charge or size.

For example, 

distance(Phe, Leu)=1

distance(Phe, Gly)=3

distance(Phe,Phe)=0



 qij=pi*pj*eλscore(i,j)

qij - the probability of aminoacid i to be replaced with aminoacid j

pi*pj - the probability of aminoacid i to be replaced by aminoacid j by 
chance

econst - reflects how the random probability changes with the time 
(each time the DNA duplicates, the population of sequences 
growths exponentially)

How often the aminoacid i is replaced by aminoacid j during this 
exponential growth, depends on the intrinsic properties of the pair 
of aminoacids, which are reflected in the score(i,j) value



qij=pi*pj*eλscore(i,j)

From here:
score(i,j)=1/ λ * ln [ qij/ (pi*pj)]

where 1 / λ is some scaling factor

If the probability of aminoacid i to be replaced by aminoacid j is 
the same as the random probability, the score will be 0 

If it is less than the randomly expected, the score will be negative
If it is much more than expected by chance, the score will be a 

large positive value 



A R N D C

A 9867 2 9 10 3

R 1 9913 1 0 1

N 4 1 9822 36 0

D 6 0 42 9859 0

C 1 1 0 0 9973

Based on the number of the substitutions from the pairwise alignment of the closely 
related proteins, which are not more than 1% different

This is called PAM-1 substitution matrix

The values for PAM-5 are obtained by multiplying the values in PAM-1 5 times by the 
same matrix

By this we extrapolate the frequency of substitutions in a closely related proteins to 
the distanly related, which does not really work in practice



AABCDA...BBCDA

DABCDA.A.BBCBB

BBBCDABA.BCCAA

AAACDAC.DCBCDB

CCBADAB.DBBDCC

AAACAA...BBCCC

The frequency of the substitutions in the conserved blocks of distantly 
related proteins, put into a multiple alignment

BLOSUM-65 is the matrix built on the set of proteins which are no more than 
65% similar

BLOSUM-50 is for more similar proteins than BLOSUM-65
PAM-250 is for more distant proteins than PAM-50



Frequency:
• f(i,j)=count(i,j)/[count(i)*count(j)]

The entry of the matrix:
• Score(i,j)=log f(i,j)


