
Multiple Pattern
Matching with the

Aho-Corasick Algorithm
Tom Spreen, Andre Van Slyke

CSC 428 (Spring 2010)

Intro: A Few Definitions
TEXT: a (usually large) set of characters that
we wish to search through (the “haystack”)

PATTERN: a smaller set of characters that
we are looking for in the text (the “needle”)

DICTIONARY: a set of (distinct) patterns
that we are looking for (a “handful of
different needles”)

Motivation

There are many real-world cases whereby
we need to search for instances of not one,
but many different patterns in a given text
(exact-set matching)

Problem: large sets, long patterns and huge
texts result in unacceptable (s-l-o-w-w-w-w)
performance using naive methods

Motivation
Example 1: DNA Contamination

The Question: “Did we find Dinosaur DNA?”

TEXT: a candidate DNA sample from a
paleontological dig site

DICTIONARY: several small snippets of
human mitochondrial DNA

http://www.dinosauria.com/jdp/misc/dna.htm

Motivation

Example 2: Computer Virus Detection

Question: “Is my program infected?”

TEXT: the complete code of a suspect
program (eg. Microsoft Word)

DICTIONARY: the set of all known computer
viruses which could infect the given system

Implementation

Clearly, multiple pattern matching is
important

How do we do FAST multiple pattern
searches?

Aho-Corasick Algorithm

due to Alfred V. Aho and Margaret J. Corasick
(Bell Labs)

first published in June 1975

Aho-Corasick Algorithm

MAIN IDEA: go through the text just ONCE,
searching for all of the patterns in the
dictionary at once

Aho-Corasick Algorithm

Question: How do we examine a given text
for instances of an entire dictionary, ALL AT
ONCE?

Answer: Smart pre-processing!

Aho-Corasick Algorithm

STEP 1: Build a KEYWORD TREE K from the
dictionary elements

Label certain nodes of the keyword tree K
with the index of that particular pattern in
the dictionary P (starting at 1). These will be
the NUMBERED NODES.

Aho-Corasick Algorithm

STEP 2: Create FAILURE LINKS within the
keyword tree K

FAILURE LINK: a link from the longest suffix
of the current pattern that also exists as a
prefix in the keyword tree, to that prefix in
the tree.

THEOREM: Failure links are unique

Aho-Corasick Algorithm

STEP 3: Using the A-C Algorithm, search the
text T using the pre-constructed keyword
tree for the dictionary P

Algorithm full_AC_search

l := 1; // l : starting pos of current search in the text
c := 1; // c : current character position in the text
w := root; // w : the node we are currently at in the tree
repeat

while there is an edge (w, w’) labeled T(c)
begin // w’ : some child of w that fits the description

IF (w’ is a numbered node), OR
(there is a directed path of failure links
 from w’ to a numbered node)

THEN
report occurrence of Pi, ending at position c;

w = w', and c = c + 1;
end;

w := nw and l := c - lp(w); // ask us about lp(w)! :-)
until c > n;

Running Time

Preprocessing: O(n) time to create prefix tree
and failure links, where n is the total length
of the dictionary P

Searching: we proceed through the text T
exactly once, possibly reporting occurrences
of P in T

Thus, the total running time is O(n) + O(m+k),
where m = |T| and k = # occurrences

Running Time

Theorem: If P is a set of patterns with total
length n, and T is a text of total length m,
then one can find all occurrences of T in
patterns from P in O(n) preprocessing time
plus O(m+k) search time, where k is the
number of occurrences found.

Aho-Corasick Algorithm

One last real-world application:

grep -F (UNIX and derivatives; search a
document for a list of fixed strings) makes
use of the Aho-Corasick algorithm

if you run Mac OS X or any other -nix
system, you have Aho-Corasick!

Primary Reference:

Gusfield, Dan. Algorithms on Strings, Trees,
and Sequences: Computer Science and
Computational Biology. Cambridge, England:
Cambridge University Press, 2005.

Questions?

