FPtree/FPGrowth (Complete Example)

Lecture 15A

First scan – determine frequent 1itemsets, then build header

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,C,D,E\}$
4	{A,D,E}
5	{A,B,C}
6	$\{A,B,C,D\}$
7	{B,C}
8	{A,B,C}
9	$\{A,B,D\}$
10	{B,C,E}

В	8
A	7
С	7
D	5
Е	3

FP-tree construction

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	{A,B,C}
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	{B,C,E}

After reading TID=2:
null
B:2
C:1
D:1

FP-Tree Construction

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

Header table

Item		Pointer
В	8	
Α	7	
С	7	, see et en
D	5	, received.
Е	3	. reconstructive control

Chain pointers help in quickly finding all the paths of the tree containing some given item.

Paths containing node E

Conditional FP-Tree for E

- FP-Growth builds a conditional FP-Tree for E, which is the tree of itemsets ending in E.
- It is not the tree obtained in previous slide as result of deleting nodes from the original tree. Why?
- Because the order of the items can change.
 - Now, C has a higher count than B.

Suffix E

The set of paths ending in E.

Insert each path (after truncating E) into a new tree.

(New) Header table

We continue recursively.

Base of recursion: When the tree has a single path only.

FI: E

Steps of Building Conditional FP-Trees

- 1. Find the paths containing on focus item.
- 2. Read the tree to determine the new counts of the items along those paths.

Build a new header.

3. Read again the tree. Insert the paths in the conditional FP-Tree according to the new order.

Suffix DE

(New) Header table

The conditional FP-Tree for suffix DE

The set of paths, from the E-conditional FP-Tree, ending in D.

Insert each path (after truncating D) into a new tree.

We have reached the base of recursion.

FI: DE, ADE

Base of Recursion

- We continue recursively on the conditional FP-Tree.
- Base case of recursion: when the tree is just a single path.
 - Then, we just produce all the subsets of the items on this path merged with the corresponding suffix.

Suffix CE

The set of paths, from the E-conditional FP-Tree, ending in C.

Insert each path (after truncating C) into a new tree.

We have reached the base of recursion.

FI: CE

Suffix AE

The conditional FP-Tree for suffix AE

The set of paths, from the E-conditional FP-Tree, ending in A.

Insert each path (after truncating A) into a new tree.

We have reached the base of recursion.

FI: AE

Suffix D

The set of paths ending in D.

Insert each path (after truncating D) into a new tree.

We continue recursively. Base of recursion: When the tree has a single path only.

FI: D

Suffix CD

The set of paths, from the D-conditional FP-Tree, ending in C.

Insert each path (after truncating C) into a new tree.

We continue recursively.

Base of recursion: When the tree has a single path only.

FI: CD

Suffix BCD

(New) Header table

Conditional FP-Tree for suffix CDB

The set of paths from the CD-conditional FP-Tree, ending in B.

Insert each path (after truncating B) into a new tree.

We have reached the base of recursion.

FI: BCD

Suffix ACD

Conditional FP-Tree for suffix ACD

The set of paths from the CD-conditional FP-Tree, ending in A.

Insert each path (after truncating B) into a new tree.

We have reached the base of recursion.

FI: ACD

Suffix C

(New) Header table

The set of paths ending in C.

Insert each path (after truncating C) into a new tree.

We continue recursively. Base of recursion: When the tree has a single path only.

FI: C

Suffix AC

(New) Header table

Conditional FP-Tree for suffix AC

The set of paths from the C-conditional FP-Tree, ending in A.

Insert each path (after truncating A) into a new tree.

We have reached the base of recursion.

FI: AC, BAC

Suffix BC

(New) Header table

Conditional FP-Tree for suffix BC

The set of paths from the C-conditional FP-Tree, ending in B.

Insert each path (after truncating B) into a new tree.

We have reached the base of recursion.

FI: BC

Suffix A

(New) Header table

Conditional FP-Tree for suffix A

The set of paths ending in A.

Insert each path (after truncating A) into a new tree.

We have reached the base of recursion.

FI: A, BA

Suffix B

(New) Header table

Conditional FP-Tree for suffix B

The set of paths ending in B.

Insert each path (after truncating B) into a new tree.

We have reached the base of recursion.

FI: B

Array Technique

FP-Tree Construction

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

Transaction Database

Header table

В	8
A	7
C	7
D	5
Е	3

First pass on DB: Determine the header. Then sort it.

Second pass on DB: Build the FP-Tree. Also build an array of counts.

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

Transaction Database

В	8
A	7
C	7
D	5
Е	3

A	1			
C				
D				
Е				
	В	A	С	D

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

Transaction Database

В	8
A	7
C	7
D	5
Е	3

A	1			
C	1			
D	1		1	
Е				
	В	A	С	D

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

Transaction Database

В	8
A	7
C	7
D	5
Е	3

A	1			
C	1	1		
D	1	1	2	
Е		1	1	1
	В	A	С	D

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	{A,B,C}
6	$\{A,B,C,D\}$
7	{B,C}
8	{A,B,C}
9	$\{A,B,D\}$
10	$\{B,C,E\}$

Transaction Database

В	8
A	7
C	7
D	5
Е	3

A	1			
C	1	1		
D	1	2	2	
Е		2	1	2
	В	A	С	D

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

В	8
A	7
C	7
D	5
Е	3

A	2			
C	2	2		
D	1	2	2	
Е		2	1	2
	В	A	С	D

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	{A,B,C}
6	$\{A,B,C,D\}$
7	{B,C}
8	{A,B,C}
9	$\{A,B,D\}$
10	{B,C,E}

В	8
A	7
C	7
D	5
Е	3

A	3			
C	3	3		
D	2	3	3	
Е		2	1	2
	В	A	С	D

D:1

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

Header table

В	8
A	7
C	7
D	5
Е	3

A	3			
C	4	3		
D	2	3	3	
Е		2	1	2
	В	A	С	D

E:1

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	{A,B,C}
6	$\{A,B,C,D\}$
7	{B,C}
8	{A,B,C}
9	$\{A,B,D\}$
10	$\{B,C,E\}$

В	8
A	7
C	7
D	5
Е	3

A	4			
C	5	4		
D	2	3	3	
Е		2	1	2
	В	A	С	D

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	{A,B,C}
6	$\{A,B,C,D\}$
7	{B,C}
8	{A,B,C}
9	$\{A,B,D\}$
10	$\{B,C,E\}$

В	8
A	7
C	7
D	5
Е	3

A	5			
C	5	4		
D	3	4	3	
Е		2	1	2
	В	A	С	D

D:1

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

D:1

Header table

В	8
A	7
C	7
D	5
Е	3

A	5			
C	6	4		
D	3	4	3	
Е	1	2	2	2
	В	A	С	D

E:1

E:1

Why have the array?

Constructing conditional FP-Trees.

Without array

- Traverse the base FP-Tree to determine the new item counts.
 - Construct a new header.
- Traverse again the base FP-Tree and construct the conditional FP-Tree.

With array

- Construct a new header helped by the array.
- Traverse the base FP-Tree and construct the conditional FP-Tree.

Saving

- One tree traversal.
- Important because experimentally it's shown that 80% of time is spent on tree traversals.

Suffix E

(New) Header table

A	2
С	2
D	2

A	5			
C	6	4		
D	3	4	3	
Е	1	2	2	2
	В	A	С	D

Conditional FP-Tree for suffix E

The set of paths ending in E.

C		
D		
	A	С

Suffix E (inserting BCE)

(New) Header table

A	2	Conditiona
C	2	FP-Tree fo
D	2	suffix E
		null

The set of paths ending in E.

C		
D		
	A	С

Suffix E (inserting ACDE)

(New) Header table

A	2
C	2
D	2

Conditional FP-Tree for suffix E

The set of paths ending in E.

C	1	
D	1	1
	A	С

Suffix E (inserting ADE)

(New) Header table

A	2
C	2
D	2

Conditional FP-Tree for suffix E

The set of paths ending in E.

C	1	
D	2	1
	A	C