Clustering algorithms:
agglomerative clustering



Clustering algorithms

* K-means clustering
B+ Agglomerative hierarchical clustering
* Density-based clustering



Hierarchical Clustering

* Produces a set of nested clusters organized as
a hierarchical tree
* Can be visualized as a dendrogram

— A tree like diagram that records the sequences of
merges or splits
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Strengths of hierarchical clustering

* Do not have to assume any particular number
of clusters

— ‘cut’ the dendogram at the proper level
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Types of hierarchical clustering

»°* Agglomerative — starts with each point as a
cluster, and performs successive merges

* Divisive — starts with all points as a cluster and
performs successive splits



Hierarchical clustering example
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Hierarchical clustering example
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Hierarchical clustering example
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Hierarchical clustering example
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Hierarchical Clustering Algorithm

e Start with the points as individual clusters

e At each step, merge the closest pair of clusters until
only one cluster left.



Hierarchical Clustering Algorithm

Let each data point be a cluster
Compute the proximity matrix
Repeat
Merge the two closest clusters
Update the proximity matrix
Until only a single cluster remains

e Key operation is the computation of the proximity of
two clusters.
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Starting Situation

e Start with clusters of individual points and a proximity
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Intermediate Situation

* After some merging steps, we have some clusters
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Intermediate Situation

 We want to merge the two closest clusters (C2 and C5)

and update the proximity matrix. __ s | aalcs
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After Merging

* The question is “How do we update the proximity

matrix?” S
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e Centroids Distance

How to Define Inter-Cluster Distance
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Inter-Cluster Distance: MIN
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Problem: sensitive to outliers




Inter-Cluster Distance: MAX
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Problem: tends to break large clusters




Inter-Cluster Distance: Centroid distance
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Inter-Cluster Distance: Group Average
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Cluster Distance: MIN (single link)

e Distance between two clusters is based on the two
most similar (closest) points in the different clusters

— Determined by one pair of points

d(C1,C2)=0.15



Hierarchical Clustering: MIN
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Cluster Distance: MAX

e Distance between two clusters is based on the two
least similar (most distant) points in the different
clusters

— Determined by one pair of points
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Hierarchical Clustering: MAX

04r

0.351

0.3r

0.251

0.2-
0.15-

0.1-
0.05-
0

Nested Clusters Dendrogram



Hierarchical clustering: Group Average

* Proximity of two clusters is the average of pairwise
proximity between points in the two clusters.

> proximity(p;,p;)
p;cCluster;
pjcCluster;

roximity(Cluster,, Cluster.) =
P ¥ Y ) | Cluster, | «| Cluster; |

— uses all pairs of points from two clusters



Cluster distance: Group Average
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Cluster Distance: Centroid distance

e Distance between two clusters is based on the
distance between their centroids

— Determined by all points in each cluster



Cluster distance: Centroid distance
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Hierarchical Clustering: Time and Space

* O(N?) space since it uses the proximity matrix.

— N is the number of points.

* O(N3) time in many cases

— There are N steps and at each step the size, N?,
proximity matrix must be updated and searched

— Complexity can be reduced to O(N? log(N) ) time
using more advanced data structures

Hierarchical clustering is expensive !



Example: clustering people by age

Example in one dimension (to skip proximity matrix
computation)

The data consists of the ages of people at a family
gathering.

The goal is to cluster participants by age

The distance between people is the difference in
their ages.

The procedure: sort participants by age, then begin
clustering the closest groups



Distance between clusters: MIN
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Distance between clusters: MIN
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Distance between clusters: MIN
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Distance between clusters: MIN
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Distance between clusters: MIN
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3 groups detected
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Final dendrogram
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Hierarchical clustering application:
evolution of Canidae
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Giant Panda is a bear
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Hierarchical clustering application:
languages evolution

' ji
oo ooo

lee

i From

bl “Indo-European languages
ey tree by Levenshtein distance”
Ol by M. Serval and F. Petroni

goooon HDD [} [m]

I

flia

=)

1000 2000 3000 4000 5000 Yo
Time (vears)



Hierarchical clustering application:
languages evolution
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