
Clustering algorithms: 
agglomerative clustering

Lecture 20



Clustering algorithms

• K-means clustering

• Agglomerative hierarchical clustering

• Density-based clustering



Hierarchical Clustering 
• Produces a set of nested clusters organized as 

a hierarchical tree

• Can be visualized as a dendrogram

– A tree like diagram that records the sequences of 
merges or splits
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Strengths of hierarchical clustering

• Do not have to assume any particular number 
of clusters

– ‘cut’ the dendogram at the proper level

8 clusters4 clusters2 clusters



Types of hierarchical clustering

• Agglomerative – starts with each point as a 
cluster, and performs successive merges

• Divisive – starts with all points as a cluster and 
performs successive splits



Hierarchical clustering example
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Hierarchical clustering example
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Hierarchical Clustering Algorithm

• Start with the points as individual clusters

• At each step, merge the closest pair of clusters until 
only one cluster left.



Hierarchical Clustering Algorithm

Let each data point be a cluster

Compute the proximity matrix

Repeat

Merge the two closest clusters

Update the proximity matrix

Until only a single cluster remains

• Key operation is the computation of the proximity of 
two clusters.



Starting Situation 
• Start with clusters of individual points and a proximity 

matrix
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Intermediate Situation
• After some merging steps, we have some clusters 
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Intermediate Situation
• We want to merge the two closest clusters (C2 and C5)  

and update the proximity matrix. 
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After Merging
• The question is “How do we update the proximity 

matrix?”
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How to Define Inter-Cluster Distance
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Inter-Cluster Distance: MIN
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Inter-Cluster Distance: MAX
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Inter-Cluster Distance: Centroid distance
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Inter-Cluster Distance: Group Average
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Cluster Distance: MIN (single link)

• Distance between two clusters is based on the two 
most similar (closest) points in the different clusters

– Determined by one pair of points
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Hierarchical Clustering: MIN

Nested Clusters Dendrogram
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Cluster Distance: MAX
• Distance between two clusters is based on the two 

least similar (most distant) points in the different 
clusters

– Determined by one pair of points

d(C1,C2)=0.39
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Hierarchical Clustering: MAX

Nested Clusters Dendrogram
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Hierarchical clustering: Group Average

• Proximity of two clusters is the average of pairwise 
proximity between points in the two clusters.

||Cluster||Cluster

)p,pproximity(

)Cluster,Clusterproximity(
ji

Clusterp
Clusterp

ji

ji
jj

ii








– uses all pairs of points from two clusters



Cluster distance: Group Average

Nested Clusters Dendrogram
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Cluster Distance: Centroid distance
• Distance between two clusters is based on the 

distance between their centroids

– Determined by all points in each cluster



Cluster distance: Centroid distance

Nested Clusters Dendrogram
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Hierarchical Clustering:  Time and Space

• O(N2) space since it uses the proximity matrix.  

– N is the number of points.

• O(N3) time in many cases

– There are N steps and at each step the size, N2, 
proximity matrix must be updated and searched

– Complexity can be reduced to O(N2 log(N) ) time 
using more advanced data structures

Hierarchical clustering is expensive !



Example: clustering people by age

• Example in one dimension (to skip proximity matrix 
computation)

• The data consists of the ages of people at a family 
gathering. 

• The goal is to cluster participants by age

• The distance between people is the difference in 
their ages.

• The procedure: sort participants by age, then begin 
clustering the closest groups
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1 3 5 8 9 11 12 13 37 43 45 49 51 65

3 groups detected
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Final dendrogram



Hierarchical clustering application: 
evolution of Canidae



Giant Panda is a bear



Hierarchical clustering application: 
languages evolution

From

“Indo-European languages 

tree by Levenshtein distance”
by M. Serval and F. Petroni



Hierarchical clustering application: 
languages evolution


