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BOOLEAN VALUED RANDOM 
VARIABLES
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Discrete Boolean-valued random 
variables
A is a Boolean-valued random variable if A denotes an event, and 

there is some degree of uncertainty as to whether A occurs or 
not.

Examples:

 P = p: The US president in 2023 will be male

 P=¬p: The US president will not be a male

 H = h: You wake up tomorrow with a headache

 H=¬h: No headache
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Probabilities

We write P(A=a), or P(A=true) or simple P(A) as “the fraction of 
possible worlds where A=a is true”

World in which 
A=a

Event space of 
all possible 
worlds

Its 
area=1.0

P(A=a) is the 
proportion of 
a red oval out 
of the blue 
universe

World in which A=¬a
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The Axioms of Probability

We do not need to prove that:

I. 0<= P(A=a)<=1

II. P(A or B)=P(A)+P(B)-P(A and B)

III. P(A)+P(¬A)=1

A
B
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Theorems of Probability I

P(¬A )=1-P(A)

A
B

A

¬A
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Theorems of Probability II

P(A)=P(A ∩ B) + P(A ∩ ¬B) 

A
B A ∩ B

A ∩ ¬B
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Conditional probability I

 P(A|B) = fraction of worlds in which A is true 
out of all the worlds where B is true 

A
B

A
B

CP definition: P(A|B)= P(A ∩ B) / P(B)
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A ∩ B



Conditional probability II

 P(A|B) = fraction of worlds in which A is true 
out of all the worlds where B is true 

A
B

A
B

CP definition: P (¬A|B) = P(¬A ∩ B) / P(B)
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Two random variables A and B are independent if 

P(A|B) = P(A), which means that:

P(a|b) = P(a)

P(¬ a|b) = P(¬ a)

P(a| ¬ b) = P(a)

P(a| ¬ b) = P(a)

Knowing that B is true (or false) does not change the 
probability of A

Probabilistic independence

A

B



Theorems III. Chain rule

From the definition of conditional probabilities:

P(A|B)= P(A ∩ B) / P(B)

we can compute P(A ∩ B) – that both events happened 
together:

P(A ∩ B) =P(A|B)P(B)

If A and B are independent:

P(A ∩ B) =P(A)P(B)
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Theorems IV. Bayes theorem

P(A ∩ B) =P(A|B)P(B)

On the other hand:

P(B ∩ A) =P(B|A)P(A)

P(A|B)P(B)= P(B|A)P(A)

and we can express conditional probability of A given B 
through conditional probability of B given A and 
unconditional probabilities of A and B:

P(A|B) = P(B|A)P(A)/P(B)
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A is independent of B: knowing that B is true (or 
false) does not change the probability of A:

P(A|B) = P(A)

A and B are mutually exclusive – not independent 
variables: if A is true then B is false, if A is 
false then B is true with probability P(B|¬A)

P(A ∩ B)=0

Independent and mutually 
exclusive events

A

B

A

B



A and ¬A are mutually exclusive, so 
Axiom II becomes:

P(A ∨ ¬A)=P(A ) +P(¬A)

Theorems of Probability V 

A

¬A



P( A ∩ (B ∨ ¬B))=P(A ∩ B ) +P(A ∩ ¬B)=P(A) 
(from Theorem II)

Theorems of Probability VI 

B

¬B

A



Multiple variables

The theorems for 2 Boolean-valued random variables can be extended to 

several random variables C, E1, E2,…,En.  Let C, E1, E2, … En be 
Boolean-valued random variables. For convenience, we will let E 
denote the n-tuple of random variables (E1,E2,…,En)

E1, E2, … En=E

P(C ∩ E1 ∩ E2 ∩ … ∩ En)=P(C,E1,E2,…En)=P(C,E)

Chain rule:

P(C,E)=P(C)P(E1|C,E2,…En)P(E2|C,E1, E3,…,En)x…xP(En|C,E1,…En-1)
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Multiple variables

If E1,…En are mutually independent and depend only on C then:

P(C,E)=P(C)P(E1|C)P(E2|C)x…xP(En|C)

Bayes theorem:

P(C|E)=P(C,E)/P(E)
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Multi-valued random variables

Suppose A can take a value from a set of size greater than 2 – say, k 
value. Multi-valued random variable is defined as:

 P(A=ai ∩ A=aj)=0 for i≠j (mutually exclusive)

 P(A=a1 ∨ A=a2 ∨ … ∨ A=ak)=1

Theorem V: P(A=a1 ∨ A=a2 ∨ … A=am)=Σ(from i=1 to m)P(A=ai), m<=k

Theorem VI: P(B ∩ [A=a1 ∨ A=a2 ∨ A=am])=Σ(from i=1 to m) P(B ∩ Ai) 
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