Classifiers: toy example of Naive Bayes

Data mining lab 3

Input data

skin	color	size	flesh	class
1 hairy	brown	large	hard	safe
2 hairy	green	large	hard	safe
3 smooth	red	large	soft	dangerous
4 hairy	green	large	soft	safe
5 hairy	red	sm all	hard	safe
6 smooth	red	small	hard	safe
7 smooth	brown	sm all	hard	safe
8 hairy	green	sm all	soft	dangerous
9 smooth	green	sm all	hard	dangerous
10 hairy	red	large	hard	safe
11 sm ooth	brown	large	soft	safe
12 smooth	green	sm all	soft	dangerous
13 hairy	red	sm all	soft	safe
14 sm ooth	red	large	hard	dangerous
15 sm ooth	red	sm all	hard	safe
16 hairy	green	sm all	hard	dangerous

Query: hairy skin, red color, large with soft flesh.

The question is: is it safe to eat this unknown animal?

Naive Bayes I

1. To answer the query we need to calculate the relative values for probabilities: P(safe | E) and P(dangerous|E), where E=(hairy,red,large,soft).

Naive Bayes II

2. According to the formula, P(safe|E)=P(hairy|safe)*P(red|safe)*P(large|safe)*P(soft|safe)*P(safe)*alpha.

P(hairy|safe) is estimated as a fraction of hairy animals from all animals of class safe, similarly for the rest of the probabilities.

P(safe|E) = 6/10*5/10*5/10*3/10*10/16*alpha = alpha*0.028

Naive Bayes III

3. Compute P(dangerous|E)=P(hairy|dangerous)*P(red|dangerous)*P(large|dangerous)*P(soft|dangerous)*P(dangerous)*alpha.

P(dangerous|E)=2/6*2/6*2/6*3/6*6/16*alpha=alpha*0.007

Naive Bayes IV

4. Compare P(safe|E) with P(dangerous|E). What is the prediction? Is it safe or dangerous to eat this animal?

P(safe|E)=alpha*0.028

P(dangerous|E)=alpha*0.007