
Java IO. Part II. Object
serialization

Lecture 22

Summary: streams

• Core connection streams represent a connection to a
source or a sink of data. They are low-level classes
which do an actual work

• Chain streams (decorators) wrap around connection
streams, cannot work on their own, need to be
chained to connection streams

Main utilities of java.io

• File manipulation

• Writing and reading of Streams

• Serializing objects

Saving object state

• Objects have state and behavior

• Behavior is defined in the class, but state lives with
each individual object

• How to save and restore the object state?

Two ways of saving the state

• Write the value of each variable into a file (if the data
to be used by a non-java application)

• Serialize the entire object (if the state to be used only
inside java code)

1. Writing to a stream as a plain text
file with delimiters

Create a file and write one line per character, each character property
separated by a delimiter:
BufferedWriter writer =
 new BufferedWriter(new FileWriter(“game.txt”));
 writer.write(unit.getPower() +
 “,”+unit.getName()+…“\n”);

This results in the following output file:

50,Elf,bow, sword,dust
200,Troll,bare hands,big ax
120,Magician,spells,invisibility

Which is easy for human to read

Reading from a stream

 File myFile = new File(“game.txt”);

 FileReader fileReader = new
 FileReader(myFile);

 BufferedReader reader =

 new BufferedReader(fileReader);

 String line = null;

 while ((line = reader.readLine()) != null)
 {

 System.out.println(line);

 }

 reader.close();

Object serialization

Object on the heap
Object serialized

The object has state:
values of instance variables

Saves the values of instance variables,
so the identical object can be restored

2. Serialize entire character object

GameCharacter one = new GameCharacter(50, “Elf”, new
 String[] {“bow”, “sword”, “dust”});
GameCharacter two = new GameCharacter(200, “Troll”, new
 String[] {“bare hands”, “big ax”});
GameCharacter three = new GameCharacter(120, “Magician”,
 new String[] {“spells”, “invisibility”});

// imagine code that does things with the characters that might change their
state values
ObjectOutputStream os = new ObjectOutputStream(
 new FileOutputStream(“Game.ser”));
os.writeObject(one);
os.writeObject(two);
os.writeObject(three);
os.close();

Much easier for Java program to read

De-serialize

ObjectInputStream is = new ObjectInputStream(

 new FileInputStream(“Game.ser”));

GameCharacter oneRestore

 = (GameCharacter) is.readObject();

GameCharacter twoRestore

 = (GameCharacter) is.readObject();

GameCharacter threeRestore

 = (GameCharacter) is.readObject();

ObjectOutputStream

• Converts objects to a sequence of bytes, which are passed to the
underlying connection stream (for example FileOutputStream)

• FileOutputStream writes bytes to a file

ObjectOutputStream Object

Object is flattened (serialized)

FileOutputStream

0111011111

The bytes are
written to

File

Destination

What happens to an object when it is
serialized

The values of all instance variables are converted into a
sequence of bytes

h w

000000111
000000111

What needs to be saved?

• Primitive variables contain values

• Reference variables contain object references

• The objects these variables refer to may have their
own instance variables that are reference variables

The entire object graph is serialized

• When the main object is serialized, all the objects it
refers to are also serialized, and all the objects these
objects refer to…

• Serialization saves the entire object graph

• This happens automatically

• If a child object in the object graph is referenced by
more than one reference variable, it is saved only
once.

Implement Serializable

• Serializable – marker (tag) interface

• Objects of Serializable are saveable through
serialization mechanism

All or nothing gets serialized

• Either the entire object graph is serialized
correctly, or serialization fails (NotSerializable
Exception)

• You can’t serialize a Pond object if its Duck
variable refuses to be serialized by not
implementing Serializable

Transient keyword

• Mark an instance variable as transient if it can’t or
should not be serialized.

• The run-time specific information should not be
saved (network connections, threads, file objects…).
Once the program shuts down, there is no way to
bring these things back to life in any meaningful way.

• These should be recreated from scratch each time

Transient fields example

class Chat implements Serializable {

 transient String currentID;

 String userName;

 // more code

}

When the object is brought back, the transient fields
are initialized to default values (null for instance
variables)

Serializable or not?

• All subclasses of a serializable class are
serializable by default (normal inheritance)

• If class designer forgot to make its class
serializable, you can subclass and make your
subclass serializable.

• In this case, when the subclassed object gets
deserialized, the constructor of its superclass
(which is not Serializable) runs as if for new
object creation of a superclass

Why not serializable by default

• Can’t un-serialize

• Some objects should not be saved: password

• Some things does not make sense to save

Deserialization: restoring the object

FileInputStream fileStream = new
 FileInputStream(“MyGame.ser”);
ObjectInputStream os = new
 ObjectInputStream(fileStream);

Object one = os.readObject();
Object two = os.readObject();
Object three = os.readObject();
GameCharacter elf = (GameCharacter) one;
GameCharacter troll = (GameCharacter) two;
GameCharacter magician = (GameCharacter)
three;
os.close();

Downcasting

What happens during de-serialization

0111011111

ObjectInputStream

Is handed
over to

Is read
by

FileInputStream (a core
connection stream)

0111011111

This step will throw an
exception if JVM cannot
find or load the class

File

Restored Object
on the heap

Class is found and
loaded, instance
variables re-assigned

Deserialization remarks

• Static (class) variables are not serialized and not
restored

• For each transient instance variable, its constructor
is executed

• Objects sent through the network connection can be
stamped with a URL which tells where to look for a
class definition

Serialization: summary

• You can save the object’s state by serializing the object
• You use ObjectOutputStream to serialize an object,

which is wrapped around connection stream such as
FileOutputStream

• To be serialized, an object must implement Serializable
interface

• Mark an instance variable with the transient keyword if
you want serialization to skip this variable

• During deserialization the class of all objects in the
object graph should be available to JVM

• Static variables are not serialized

The most often used readers

BufferedReader (FileReader)

ObjectInputStream(

 BufferedInputStream(

 FileInputStream))

The most often used writers

BufferedWriter (FileWriter)

ObjectOutputStream (

 BufferedOutputStream(

 FileOutputStream))

What happens with deserialization if
you change your class?

Deserialization fails if:

• You removed an instance variable

• You changed the declared type of instance variable

• You changed a non-transient variable to transient

• You changed an instance variable to static

Changes which do not affect
deserialization

• Adding new instance variables

• Changing an access level of instance variable

• Changing a variable from transient to non-transient

In all these cases, new variables will be initialized to
their default values

Version UID

• Each time an object gets serialized, it is stamped
with a version ID number, generated based on
information about the class structure

• If you change your class in any way, its version ID
changes, and deserialization fails

• You can put a serial version ID into your
serializable class, taking the responsibility that a
new version will be compatible with an old one

• To create serial version ID use the serialver tool:
serialver <classname>

The end of Java I/O

