Separation of concerns.
Model-View-Controller design pattern

Separation of concerns

* “Separation of concerns ... even if not
perfectly possible is yet the only available
technique for effective ordering of one’s
thoughts” (Dijkstra, "On the role of scientific thought”, 1974).

* To be able to manage the complexity of a
software system it must be decomposed into

parts that overlap in functionality as little as
possible.

Separate your application into distinct
layers

This allows different layers within the application to
vary independently

Presentation Layer

Business Layar

Resource Access Layer

Separation of concerns with objects

* Coupling: the degree of dependency between
two objects. We always want low coupling.

* Cohesion: the measure of how strongly-
related is the set of functions performed by an
object. We always want high cohesion.

http://en.wikipedia.org/wiki/Coupling_(computer_programming)
http://en.wikipedia.org/wiki/Cohesion_(computer_science)

Model-View-Controller design pattern

Model-View—Controller (MVC) is an architecture that
separates the representation of information from the
user's interaction with it.

The model consists of application data and business
rules, and the controller mediates input, converting it
to commands for the model or view.

Many of the most popular WEB application
frameworks use the MVC architecture, including
ASP.NET, Codelgniter, Zend, Django, and Ruby on Rails.

The central idea behind MVC is code reusability and
separation of concerns

Very simple application: model

User 0..*
name 1
score UserModel

currentUser: User

add(user:User)
remove(name:String)
authorize(name:String, pwd:String)

0..*

User

Name
score

Data layer separation

UserModel

currentUser: User

add(user:User)
remove(name:String)

authorize(name:String, pwd:String)

<<interface>>
IDataDelegate

UsersMap load()
boolean save(inMem: UsersMap)
boolean login (name:String, pwd:String)

FileDataDelegate

DatabaseDelegate

/\

OracleDelegate MSSQLDelegate

Step 1. Model Implementation with
data layer

1. Implement all model classes
. Implement data layer — at least one concrete
class

. Test all important scenarios using simple text
viewer

Step 2. Different Views can be plugged in -
for the same model

T 1

| . UserModel : Model
| User currentUser: User |

I 0..* add(user:User) |

[| name remove(name:String)

|| score authorize(name:String, pwd:String)

I

I

<<interface>>
IViewer

createViewer()
displayUser()

I
I
. I
View |
| displayError
| A
I
I
I
I

User

name
score

Step 3. Updating multiple views - pull

0..*

UserModel

currentUser: User

add(user:User)
remove(name:String)
authorize(name:String, pwd:String)

|
| Model
|
|

View

GUIEditor

<<interface>>
IViewer

createViewer()
displayUser()
displayError

GUIViewer

refreshView()

refreshView()

_Step 4.Upd

r

| Model - |
<<interface>>
| I
UserModel //ﬂ'	Observable
	currentUser: User 2 addObserver(o:10bserver)
	add(user:User) removeObserver(o:IObserver)
	remove(name:String) notifyObservers()
	authorize(name:String, pwd:String)
I	
==	
: <<interface>> <<interface>>	
	Observer IViewer :
View	update(updatedModel: UserModel) createViewer()
A D displayUser()	
: < e displayError	
\\\\ \\\\\\ L;l :	
:	
I	

Step 5. Reusing views — Controller (Stratggy_g?attern)

I Model :
| <<interface>> |
| UserModel W’ |IObservable |
/ |
: currentUser: User / addObserver(o:10bserver) I
| add(user:User) removeObserver(o:IObserver)I
| remove(name:String) notifyObservers() |
authorize(name:String, pwd:String)
L 'S L2
——————— 7 2 A A
& S g
E (s |
————————————— I <<interface>>
Controller <<interface>> I | IObserver
IController I |
I | | update(updated: UserModel)
I
I
I

N

I

I
LoginController EditController | | |

I

-
—
-
——

createViewer()

I I
I I
I I
I ! I
performAction() | 4
pd
| updateModel() Ites A |
: updateView() Viewer :
I I
I I
I I

Classical Model-View-Controller

<<interface>>
|IObservable

removeObserver(o:lI0Observer)
notifyObservers()

|
|
|
addObserver(o:I0bserver) I
|
|
|

r
I UserModel

: currentUser: User

| add(user:User) J/

| remove(name:String)

| authorize(name:String, pwd:String)

e ——— ———

I — — — — S— S— — — — — — — —

<<interface>>
IController

performAction()
updateModel()

updateView()
LoginController EditController

<<interface>>
IObserver

update(updated: UserModel)

——
I
I
I
I
I
I
I

Viewer

createViewer()

I
I
|
N I
:
I
|
I

r
| UserModel

: currentUser: User

| add(user:User) J/
| remove(name:String)

| authorize(name:String, pwd:String)

| ——/————

Classical Model-View-Controller

I — — — — S— S— — — — — — — —

<<interface>>
IController

performAction()
updateModel()

updateView()
LoginController EditController

<<interface>>

W‘ |Observable

addObserver(o:10bserver)
removeObserver(o:lI0Observer)
notifyObservers()

OBSERVER

<<interface>>
IObserver

update(updated: UserModel)

I
I
|
N I
:
I
|
I

——
I
I
I
I
I
I
I

updates
| Viewer
|STRATEGY]
| createViewer()

Model 2 (WEB MVC)

After the Controller
gets the information
requested, it sends
it back to the user,
with the appropriate
View (or template).

4

User input’s some action,
perhaps from a form or
by clicking a button.

MODEL

4 {s

e.g.5_POST
$_GET

Create model
objects, call
the right functions

CONTROLLER

Each model is just

a class in our app,
representing a

group of related
functions. The model
will be told what

to do by the Controller,
and return the resulits.

The Controller deter-
mines what to do
with the data the user
input from the view,
and sends it off to
the right model for
the job.

MVC: summary

1. MVC decouples views and models by establishing a
subscribe/notify protocol between them.

Whenever the model’s data changes, the model notifies views that
depend on it. In response, each view gets an opportunity to update itself.

2. MVC also lets you change the way a view responds to

user input without changing its visual presentation.
MVC encapsulates the response mechanism in a Controller object.

3. Aview uses an instance of a Controller subclass to
implement a particular response strategy.

To implement a different strategy, simply replace the instance with a
different kind of controller. It’s even possible to change a view’s

controller at run-time to let the view change the way it responds to user
input.

Separation anxiety

Applying the principle of separation of concerns often
involves advanced concepts and constructs which bring
a certain level of complexity to the application

These techniques often lead inexperienced or more
tactical-minded developers to characterize such
designs as “overly-complex” or “over-engineered”

The real-life obstacles may prevent developing good
designs beyond merely solving the technical problems.

The trade-off is here between ordered complexity
(good design) and disordered complexity (no design).

Design patterns

e Patterns are general solutions to recurring
problems

e Using patterns makes your software flexible,
extensible, ready to take change from every
direction

Check out the following links:
http://www.headfirstlabs.com/books/hfdp/

http://today.java.net/pub/a/today/2004/12/23/
patterns.html

http://www.headfirstlabs.com/books/hfdp/
http://www.headfirstlabs.com/books/hfdp/
http://today.java.net/pub/a/today/2004/12/23/patterns.html
http://today.java.net/pub/a/today/2004/12/23/patterns.html

Founders of the concept

Gang of Four

Today
there are more
patterns than in the
GoF book; learn about
them as well.

Shoot for practical
extensibility. Don't
provide hypothetical

generality; be extensible

in ways that matter.

Go for simplicity
and don't become over-excited.
If you can come up with a
simpler solution without using a
pattern, then go for it.

Patterns are
tools not rules - they
need to be tweaked and
adapted to
your problem.

\J Oh " ‘.l’\iSS'deS

A

Evich Qamma

Design Patterns: Elements of Reusable Object-Oriented Software by
Erich Gamma, Richard Helm,Ralph Johnson, John Vlissides

Patterns we covered

Strategy: Encapsulates interchangeable behaviors
and uses delegation to decide which one to use

Singleton: ensures one and only object is created

Observer: allows objects to be notified when
state changes

Decorator: wraps an object to provide new
behavior

Model-View-Controller: decouples model from
views and controllers, this allows to plug multiple
views for the same model and to reuse views by
interchanging their controllers

