
Separation of concerns.  
Model-View-Controller design pattern 

Lecture 25 



Separation of concerns 

• “Separation of concerns … even if not 
perfectly possible is yet the only available 
technique for effective ordering of one’s 
thoughts” (Dijkstra, "On the role of scientific thought“, 1974). 

• To be able to manage the complexity of a 
software system it must be decomposed into 
parts that overlap in functionality as little as 
possible.  

 



Separate your application into distinct 
layers 

This allows different layers within the application to 
vary independently  



Separation of concerns with objects 

• Coupling: the degree of dependency between 
two objects. We always want low coupling. 

• Cohesion: the measure of how strongly-
related is the set of functions performed by an 
object. We always want high cohesion. 

 

http://en.wikipedia.org/wiki/Coupling_(computer_programming)
http://en.wikipedia.org/wiki/Cohesion_(computer_science)


Model-View-Controller design pattern 

• Model–View–Controller (MVC) is an architecture that 
separates the representation of information from the 
user's interaction with it. 

• The model consists of application data and business 
rules, and the controller mediates input, converting it 
to commands for the model or view.  

• Many of the most popular WEB application 
frameworks use the MVC architecture, including 
ASP.NET, CodeIgniter, Zend, Django, and Ruby on Rails. 

• The central idea behind MVC is code reusability and 
separation of concerns 



Very simple application: model 

User 

name 
score UserModel 

add(user:User) 
remove(name:String) 
authorize(name:String, pwd:String) 

currentUser: User 

1 

0…* 



UserModel 

Data layer separation 

User 

name 
score 

<<interface>> 
IDataDelegate 

UsersMap load() 
boolean save(inMem: UsersMap) 
boolean login (name:String, pwd:String) 

FileDataDelegate DatabaseDelegate 

OracleDelegate MSSQLDelegate 

add(user:User) 
remove(name:String) 
authorize(name:String, pwd:String) 

currentUser: User 
1 

0…* 



Step 1. Model Implementation with 
data layer 

1. Implement all model classes 

2. Implement data layer – at least one concrete 
class 

3. Test all important scenarios using simple text 
viewer 



Step 2. Different Views can be plugged in - 
for the same model 

UserModel 

User 

name 
score 

add(user:User) 
remove(name:String) 
authorize(name:String, pwd:String) 

currentUser: User 
1 

0…* 

<<interface>> 
IViewer 

createViewer() 
displayUser() 
displayError 

TextViewer GUIViewer 

Model 

View 



Step 3. Updating multiple views - pull 

UserModel 

User 

name 
score 

add(user:User) 
remove(name:String) 
authorize(name:String, pwd:String) 

currentUser: User 
1 

0…* 

<<interface>> 
IViewer 

createViewer() 
displayUser() 
displayError 

GUIEditor GUIViewer 

Model 

View 

refreshView() refreshView() 



Step 4.Updating multiple views – push (Observer) 

UserModel 

add(user:User) 
remove(name:String) 
authorize(name:String, pwd:String) 

currentUser: User 

<<interface>> 
IViewer 

createViewer() 
displayUser() 
displayError 

GUIEditor GUIViewer 

Model 

View 

<<interface>> 
IObserver 

update(updatedModel: UserModel) 

<<interface>> 
IObservable 

addObserver(o:IObserver) 
removeObserver(o:IObserver) 
notifyObservers() 



Step 5. Reusing views – Controller (Strategy pattern) 

UserModel 

add(user:User) 
remove(name:String) 
authorize(name:String, pwd:String) 

currentUser: User 

Viewer 

createViewer() 

Model 

View 

<<interface>> 
IObservable 

addObserver(o:IObserver) 
removeObserver(o:IObserver) 
notifyObservers() 

<<interface>> 
IController 

performAction() 
updateModel() 
updateView() 

<<interface>> 
IObserver 

update(updated: UserModel) 

LoginController EditController 

Controller 



Classical Model-View-Controller  
UserModel 

add(user:User) 
remove(name:String) 
authorize(name:String, pwd:String) 

currentUser: User 

Viewer 

createViewer() 

<<interface>> 
IObservable 

addObserver(o:IObserver) 
removeObserver(o:IObserver) 
notifyObservers() 

<<interface>> 
IController 

performAction() 
updateModel() 
updateView() 

<<interface>> 
IObserver 

update(updated: UserModel) 

LoginController EditController 

Viewer 

createViewer() 



Classical Model-View-Controller  

UserModel 

add(user:User) 
remove(name:String) 
authorize(name:String, pwd:String) 

currentUser: User 

Viewer 

createViewer() 

<<interface>> 
IObservable 

addObserver(o:IObserver) 
removeObserver(o:IObserver) 
notifyObservers() 

<<interface>> 
IController 

performAction() 
updateModel() 
updateView() 

<<interface>> 
IObserver 

update(updated: UserModel) 

LoginController EditController 

Viewer 

createViewer() 
STRATEGY 

OBSERVER 



Model 2 (WEB MVC) 



MVC: summary 
1. MVC decouples views and models by establishing a 

subscribe/notify protocol between them.  
Whenever the model’s data changes, the model notifies views that 
depend on it. In response, each view gets an opportunity to update itself. 

 

2. MVC also lets you change the way a view responds to 
user input without changing its visual presentation.  

MVC encapsulates the response mechanism in a Controller object. 

 

3. A view uses an instance of a Controller subclass to 
implement a particular response strategy.  

To implement a different strategy, simply replace the instance with a 
different kind of controller. It’s even possible to change a view’s 
controller at run-time to let the view change the way it responds to user 
input.  



Separation anxiety 

• Applying the principle of separation of concerns often 
involves advanced concepts and constructs which bring 
a certain level of complexity to the application 

• These techniques often lead inexperienced or more 
tactical-minded developers to characterize such 
designs as “overly-complex” or “over-engineered”  

• The real-life obstacles may prevent developing good 
designs beyond merely solving the technical problems.  

• The trade-off is here between ordered complexity 
(good design) and disordered complexity (no design).  



Design patterns 

• Patterns are general solutions to recurring 
problems 

• Using patterns makes your software flexible, 
extensible, ready to take change from every 
direction 

Check out the following links: 

http://www.headfirstlabs.com/books/hfdp/ 

http://today.java.net/pub/a/today/2004/12/23/
patterns.html  

 

http://www.headfirstlabs.com/books/hfdp/
http://www.headfirstlabs.com/books/hfdp/
http://today.java.net/pub/a/today/2004/12/23/patterns.html
http://today.java.net/pub/a/today/2004/12/23/patterns.html


Founders of the concept 
Gang of Four 

Design Patterns: Elements of Reusable Object-Oriented Software by  
Erich Gamma, Richard Helm,Ralph Johnson, John Vlissides   



Patterns we covered 

• Strategy: Encapsulates interchangeable behaviors 
and uses delegation to decide which one to use 

• Singleton: ensures one and only object is created 
• Observer: allows objects to be notified when 

state changes 
• Decorator: wraps an object to provide new 

behavior 
• Model-View-Controller: decouples model from 

views and controllers, this allows to plug multiple 
views for the same model and to reuse views by 
interchanging their controllers 


