OOP Design Principles



Single-rooted hierarchy

* Override equals() and toString() to make your
obects behave in a predictable way



Static keyword

e Class data, class method — exists for a class as
a whole



Access control

private

public

Package access (no keyword)
protected



OOP benefits

* Flexibility and maintainability

* Shapes example



Composition
Association
Aggregation
Inheritance
Interfaces

UML diagrams



OOP concepts

Abstraction
Encapsulation
Composition
Inheritance
Polymorphism



OQOP design principles

Program to an interface, not an
implementation

Encapsulate what varies and pull it away from
what stays the same

Make your classes open for extension, but
closed for modification

Favor composition over inheritance



Design pattern 1: Strategy pattern

* Define a family of algorithms, encapsulates
them, and makes them interchangeable by
using a common interface

e Strategy lets the algorithm vary independently
from clients that use it

* Examples and code in the next Lecture



