OO Design.
Case study: Guitar store

Inheritance syntax reminder: upcasting

class Instrument {
public void play() {}
static void tune(Instrument i) {

// ...
i.play();

}

// Wind objects are instruments
// because they have the same interface:
public class Wind extends Instrument {
public static void main(String[] args) {
Wind flute = new Wind();
Instrument.tune(flute); // Upcasting

Y

Method-call binding

* Run-time binding: late binding
 Compile-time binding: early binding

 Unless a class or a method are declared final,
there is no early method binding in Java

Inheritance reminder: downcasting

* You should check if il R
. . 'm!d) } represents 2 big
an object is really of oda0 g PRI
a desired class - —mLm o
then you can safely e
downcast i | e
° The Wi wi)
ClassCastException
will be thrown if Useful obj=new MoreUseful();
if (obj instanceof MoreUseful)

trying to downcast {
an object of an ((MoreUseful) obj).g();
incorrect type J

Reminder: interfaces

Interfaces and abstract classes provide a more
structured way to separate interface from
implementation

Abstract class provides one or more undefined
methods, to be implemented by extenders

Interface provides only method signatures

It allows you to create classes which inherit from
multiple interfaces and thus can be upcasted into
different forms, according to the role

Interface syntax

interface Interfacel {void f();}
interface Interface2 {void g();}

class ConcreteClass implements Interfacel, Inteface2
void f {//implementation}
void g {//implementation}

Interface example

interface CanFight { void fight(); }

interface CanSwim { void swim(); }

interface CanFly { void fly(); }

class ActionCharacter {
public void fight() {}

class Hero extends ActionCharacter
implements CanFight, CanSwim, CanFly

public void swim() {}
public void fly() {}

public class Adventure {

public static void t(CanFight x) { x.fight(); }
public static void u(CanSwim x) { x.swim(); }
public static void v(CanFly x) { x.fly(); }

public static void w(ActionCharacter x) { x.fight();
}

public static void main(String[] args) {
Hero h = new Hero();
t(h); // Treat it as a CanFight
u(h); // Treat it as a CanSwim
v(h); // Treat it as a CanFly
w(h); // Treat it as an ActionCharacter

}

Example 1: Changing object behavior at
run time through polymorphism

Interface Actor { public void act() ; }
class HappyActor implements Actor { public void act() { print("HappyActor"); } }
class SadActor implements Actor { public void act() { print("SadActor"); } }

class Stage {
private Actor actor = new HappyActor();
public void change (Actor newActor) { actor = newActor;}
public void performPlay() { actor.act(); }
}
public class Transmogrify { public static void main(String[] args) {
Stage stage = new Stage();
stage.performPlay();
stage.change(new SadActor());
stage.performPlay();

} /* Output:
HappyActor
SadActor

Example 2: Ducks simulator design

Duck <<interface>>
flyBehavior: FlyBehavior / Flyehavior
quackBehavior: QuackBehavior fly(); <<interface>>
. 7N QuackBehavior
display (); — /Ay
performFly() / ,: quack();
performQuack() / E /A
swim() // | . \
setFlyBehavior(FlyBehavior) L | Quack
setQuackBehavior (QuackBehavior) FlyWithWings 5 quack(

JAN M) [rnow Squeak

quack()

MallardDuck WoodenDuck fly()
display RubberDuck display()

display()

Example 3 (1/2): Painters

Painter

+prepareEasel()
+cleanBrushes()
+paint()

Cubist

Modern

Impressionist Surrealist

Every subclass has to implement paint()

Example 3 (2/2): Composition and
encapsulation

Painter

-paintAction : PaintAction ¢

+prepareEasel()
+cleanBrushes()
+paint)

< <|nterfaces> =

FaintAction
'+r:|uint[:-
VAT W7,
£ L y
L]
.-'#rf ! he
Y
P ' K ~
. - ! L] iy
ModernPaintAction J ' CubistPaintAction

ImpressionistPaintAction

SurrealistPaintAction

OOP Design Principles - updated

* Encapsulate what varies and pull it away from
what stays the same

* Program to an interface not to an
implementation

* Favor composition over inheritance

Real-life application: Guitar Store

Application requirements

* Maintain a guitar inventory
* Locate guitars for customers

What your predecessor built

Cuitar

serialNumber ; String
price : double
builder : String
model : String

type : 5tring
bhackWood : String
topWood : String

+getSerialMumber() : 5tring
+getPrice() : double
+setPrice(newPrice : double)
+getBuilder(: String
+getModel() : String
+getTypel) : 5tring
+getBackWoodi() : String
+getTopWoodl() : 5tring

Inventory

guitars : List
+addGuitarise rial Mumber : String, price : double, builder : String, model : String, type : 5tring, backWood : String

+getGuitar(serialNumber : String) : Guitar
+searchGuitar{searchedFor - Guitar) : Guitar

A simplified view

Guitar
serialMumber : String
price : double Inventory
builder : String +addGuitar)
maodel : String +getGuitar()
type [3tring +searchGuitar()
backWood : String
topWood : String

The Guitar class

public class Guitar {

private String serialNumber, builder, model, type, backWood, topWood;
private double price;

public Guitar (String serialNumber, double price,
String builder, String model, String type,
String backWood, String topWood) {

this.serialNumber = serialNumber;
this.price = price;

this.builder = builder;
this.model = model;

this.type = type;
this.backWood = backWood;
this.topWood = topWood;

}

public String getSerialNumber () {return serialNumber;}
public double getPrice () {return price;}
public void setPrice(float newPrice) {
this.price = newPrice;

}

public String getBuilder () {return builder;}
public String getModel () {return model;}
public String getType () {return type;}

public String getBackWood () {return backWood; }
public String getTopWood () {return topWood;}

The Inventory class

The search does not find guitars even
if they are in stock. What can be done?

Guitar dreamGuitar=new Guitar(null, O0,”fender”,
“Stratocaster”, Y“electric guitar”, null, null);

Guitar matchingGuitar=inventory.search (dreamGuitar) ;
//returns null

But the matching guitar exists

inventory.addGuitar (“V95693”, 1499, “Fender”,
“Stratocaster”, “electric”, “Alder”,”Alder”);

To do list;

1. If there are guitars in stock that fit
the customer’s needs, always find
them.

2. Take into account typing mistakes
by the customer or make it
impossible to enter erroneous
data.

Improvement 1: Remove strings where possible

public class Guitar {

private String serialNumber,
model;

private double price;

private Builder buillder;

private Type type;

private Wood ood, topWood;

public enum Type {
ACOUSTIC, ELECTRIC;

public String toString() {
switch(this) {
case ACOUSTIC: return "acoustic";
case ELECTRIC: return "electric";
default: return "unspecified";

The owner says

4)

There’s often more than
one guitar that matches

: the customer’s needs.
~
] Customers often look for a
L guitar in a specific price

range

To do list;

1. If there are guitars in stock that fit

the customer’s needs, always find
them.

2. Take into account typing mistakes
by the customer or make it
impossible to enter erroneous
data.

Find ALL matching guitars.

Improvement 2. List of matching guitars

The owner:

Change challenge 1

A lot of customers are looking for 12-

to the guitars’ characteristics we record.

string guitars. Maybe we’d better add that

\

J

7

4 .
According to the
contract, that’s
not what you

\asked for.

The programmer

What do you need to change?

1 GuitarSpec

2 Inventory

Incremental changes

Incremental changes (2)

Does this make sense?

Guitar GuitarSpec

K>

We do not want to create a new instance of GuitarSpec inside Guitar
constructor, because then we need to make changes in Guitar class each time
we update spec.

It is rather

Guitar

GuitarSpec

Changes to GuitarS

OOP design problem

Why did we have to
modify two files to
make the change?

\

Maybe we’ve allocated the
responsibilities incorrectly.
There’s a pattern called
Information Expert that might
be appropriate here.

T\)

O-O design is all about
assigning responsibilities to
the right objects

Information Expert

Assign responsiblility to the class that has the
essential information—the information expert.

Craig Larman, “Applying UML and Patterns”

Think about this?

What behavior is misplaced?

Matching the guitar to the specification

Who is the information expert?

GuitarSpec

What should we do?

Make GuitarSpec responsible for determining

If it matches a guitar.

The new GuitarSpec class

The new Inventory class

Software design

Software design is the process of planning how to solve
a problem through software.

A software design contains enough information for a
development team to implement the solution. It is the
embodiment of the plan
(the blueprint for the software solution).

What makes a design good?

1 Easy to understand

2 Flexible, easy to change

3 Satisfies the requirements (now and in the future)

4

Change challenge 2

Business is great. I'm
ready to expand and |
need some changes to
my application.

The business owner

~

I’ve added mandolins to the type of
instruments I’'m selling. Can you change
the app to handle this?

- J

Review of our application

inventory

Guitar

serialNumber: String
price: double

getSerialNumber(): String
getPrice(): double
setPrice(float)
getSpec(): GuitarSpec

Inventory

- Wc'vc moved mos'l;
O‘F the ProPcrfics
out of the ¢elass
box and USCd
assotiations instead.

addGuitar(String, double, GuitarSpec)
getGuitar(String): Guitar
search(GuitarSpec): Guitar [*]

GuitarSpec

model: String
numStrings: int

getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
getNumStrings(): int

Builder

toString(): String |

builder
1
type
. 1 |topWood h
P backWood <

Type l \ 1 NO‘&CC ‘H’\a‘l‘, we

toString(): String tan write these
Wood

toString(): String

properties on
either side of the
assotiation... there’s
no “vight thoice”;
Just use what works
best for You.

Change challenge 2: possible solutions

Advantages Disadvantages

Mandolin class Simple to implement *Duplicate code
*Hard to maintain
Instrument class with No duplicate code *Not an O-O solution
type field *Need to check type on
objects
Instrument base class *O-0 solution Does the owner have an
*No type field to check Instrument in the

*No duplicate code inventory?

Since there can’t be an)
instance of an Instrument, we
should make it an abstract
class.

J

Abstract classes encapsulate shared
behavior and define the protocol for all
subclasses

It’s not quite this simple

* Things still need to be done

— Make the Inventory class use Instrument
rather than Guitar

— Add an InstrumentSpec class
* Abstract base class for the GuitarSpec

— Add a MandolinSpec class derived from
InstrumentSpec

— Make the Inventory class use
InstrumentSpec instead of GuitarSpec

Inventory

Where

addlns{,\rumcn{f) has tode s\’cn:ifuf.
eath insbrument £yFE

)
add a new \ns{‘_rumcn{‘. subtlass, we

addInstrument(String, double, InstrumentSpec)«
get(String): Instrument

search(GuitarSpec): Guitar [*]
search(MandolinSpec): Mandolin [] =—

S 4o thange tode here:

L~ Theve's a seareh() method for eath and

inventory | *

Instrument

<

every Instrument, subelass. Not so good...

are we?

so every time we

Ve

This elass se

properties, we're going o b

ave to thange

ems OK... extept that if we
add a new insbrument with di;—Fcren{:

Builder

toString(): String

serialNumber: String
price: double

getSerialNumber(): String
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

Type

this code, too- builder ;
type
InstrumentSpec —»——""1_?
model: String

toString(): String

getBuilder(): Builder

getModel(): String

getType(): Type

getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

Wood

toString(): String

[\

Guitar Mandolin

GuitarSpec

MandolinSpec

numStrings: int

style

~ 7

These have nothing but 3
tonstruttor, so {,‘h:fre a veal
pain... and we have to add one for
every new instrument type.

getNumStrings(): int
matches(GuitarSpec): boolean

getStyle(): Style
matches(MandolinSpec): boolean

1

Style

Just like with |

new {ﬂ’c results in
J“ifumcnfgia“_.

rstrument, every

3 new subelass

toString(): String

The current search code in Inventory
class: method overloading

public List search (GuitarSpec searchSpec) {

List matchingGuitars = new LinkedList () ;
for (Iterator i = inventory.iterator(); i.hasNext();) {
Guitar guitar = (Guitar)i.next();

if (guitar.getSpec () .matches (searchSpec))
matchingGuitars.add (guitar);

}

return matchingGuitars;

public List search (MandolinSpec searchSpec) {
List matchingMandolins = new LinkedList();
for (Iterator i = inventory.iterator(); i.hasNext();) {
Mandolin mandolin = (Mandolin)i.next () ;
1f (mandolin.getSpec () .matches (searchSpec))
matchingMandolins.add (mandolin) ;

}

return matchingMandolins;

Code to an interface

(or an abstract class)

public List<Instrument> search (InstrumentSpec searchSpec)

{

List<Instrument> matchingInstruments = new
LinkedList<Instrument> () ;
for (Iterator<Instrument> 1 = inventory.iterator();
1.hasNext ();) {
Instrument instrument = 1i.next();
1f (instrument.getSpec () .matches (searchSpec))

matchingInstruments.add (instrument) ;
}

return matchingInstruments;

Our improved design

We just :
JUST eut ¢
de‘jﬁﬂ; and w‘jf{-’-‘l‘_‘_g_s out of the

|ns|.',rumeh{. iSl‘\"l;
abstract anymore.

-

Instrument

serialNumber: String
price: double
spec: InstrumentSpec

getSerialNumber(): String
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

Classes fo. instyy

dCCides {'D Sf:ar{;

h
ced any new

ments that Rick
SCHI'th

’d

instru

Instrument

serialNumber: String
price: double
spec: InstrumentSpec

getSerialNumber(): String
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

InstrumentType
toString(): String

This tan be another enumerated
Jc,\/?e, like Wood and Builder. Sc: now
add'mg a new 'msl'.rwnCn{'. 'E\[?c ‘)?\st
means adding 3 new value to this

enumerated type:

S We ¢an Put values in heye |
QUITAR, BANJo, MAND

and S0 on. MU-Ch be{:{:ﬂ_

a bunch of subt|asses.

ike
OLIN,

{'-han

Our next improvement

Instrument InstrumentSpec

serialNumber: String
price: double

properties: Map

1 getProperty(String): Object
getProperties(): Map
matches(InstrumentSpec): boolean

getSerialNumber(): String
getPrice(): double
setPrice(float)

getSpec(): InstrumentSpec

Both [nstrument and
|ns’cruan£S?cc are no
longer abstract.

=
e
MARTI

yo)
hoperry \/()\\le‘6

spec

The l‘ns{:rumehf has an
fns{rumcn'bgpec instance
assotiated with it 4o store
ins{rumcu‘f: Propcrf,ics.

R

We don't have insbrument—
s?cci-(:ic subtlasses now, so the
quitar is vepresented by an
instance of [nstrument.

J getProperty(“builder") i

instrument.getSpec () .getProperty (“builder”) ;

[hsfrumcntg])cc ,S

Ma
Lhese erumerateq P uses

'EYPcs

Pnd the [nsbrumentSee ‘
Ma\> o‘c nAnnc/ value \?ro\?crhes.

InstrumentType i
Builder

Type
Wood
toString(): String

LL

toStrI

A

¢ has a

<

7)

It depends upon what “matches” is!

public boolean matches (InstrumentSpec otherSpec) {

for (Iterator i1 = otherSpec.getProperties() .keySet().iterator();
i.hasNext();) {
String propertyName = (String)i.next();
if (!properties.get (propertyName) .equals (
otherSpec.getProperty (propertyName))) {

return false;

}

return true;

The Strategy design pattern

Instrument

InstrumentSpec

+matches(otherspec : Instrumentspec) : boolean
+setMatchStrate gy{matchStrate gy : MatchStrate gy)

\

< <|pterfaces =

MatchStrategy 1

MatchStrategy
+matches{otherSpec : InstrumentSpec © boolean
.-'1‘:"III u"\
r bt
r LY
- h
r N
! Y
- T

Add a new strategy for each
type of matching algorithm.

Design home quiz

* Design an application for home books
inventory. The requirements: maintain a book
inventory and book search

* Draw a UML diagram to show your design
— Provide any additional documentation you think is
appropriate
 Summarize which design principles and OOP
concepts have been applied

