\qquad

Recall that for a string $w, \#_{\sigma}(w)$ is the number of occurences of σ in w.

1. (2 mark) Either find, if they exist, a regular language L_{1} and a context-free language L_{2} whose intersection is regular, or explain why no such two languages exist.
2. (4 marks) True or False:
(a) __ The union of a (possibly infinite) number of regular languages can be non-regular
(b) __ If L_{1} is regular and L_{2} is context-free, then $L_{1} \cup L_{2}$ is necessarily also contextfree.
(c) __ Given a regular grammar G, each string in $L(G)$ has a unique derivation in G.
(d) __ If L is context-free, then so is L^{*}.
3. (6 marks) Give an algorithm to determine if a given Context-Free Grammar G is usable. Recall that a grammar is usable if there exists at least one string of terminals that can be derived from the start symbol of the grammar. In your answer, let the grammer be $G=(V, \Sigma, R, S)$, where
S is the start symbol, Σ is the alphabet of terminals, V is set of variables, and R is the sets of production rules.
You may refer to the left side of a rule, which consists of a single variable, and the right side of a rule, which consists of a string from $(V \cup \Sigma)^{*}$.
4. $L=\left\{w \in\{a, b\}^{*}\right.$: the latter half of the string contains only b 's $\}$. An example of a string in the language is $a b a a b a b b b b b b b$. In other words, the last a appears in the first half of the string. In odd strings, the middle symbol must be b.
(a) (4 marks) Give a natural PDA for the language given in part (a) - i.e., not a bottom-up or top-down parser obtained from your grammar.
(b) (4 marks) Give a Context-Free Grammar for the language given above.
5. (4 marks) Give a Context-Free Grammar for the following: $\left\{a^{i+j} b^{i} c^{j}: i, j \geq 0\right\}$
6. (4 marks) Give a natural PDA for the above language - i.e., not a bottom-up or top-down parser obtained from your grammar.
7. (4 marks) Give a Context-Free Grammar for the following: $\left\{a^{n} b^{m}: 2 n=5 m-3\right.$, and $n, m \geq 0\}$
8. (4 marks) Give a Context-Free Grammar for the following: $\left\{w \in\{a, b\}^{*}: w=x a^{n} b^{n} x^{R}\right.$, where x is a string in $\left.\{a, b\}^{*}\right\}$. Examples of such strings are: $a b$ (where $x=\epsilon=x^{R}$), and aababbaaabbabbabaa (where $x=a a b a b b a$ and $x^{R}=a b b a b a a$).
9. (4 marks) Give a natural PDA for the language in the previous question - i.e., not a bottom-up or top-down parser obtained from your grammar.
10. (4 marks) Give a Context-Free Grammar for the following: $\left\{w \in\{(,)\}^{*}: \#(w)=\#\right)(w)$ and every suffix of w has at least as many ('s as)'s\}. A suffix is the opposite of a prefix: for a string w, if w can be written as the concatenation of two strings, i.e., $w=w_{1} w_{2}$, then the latter part, w_{2} is a suffix of w. Note that ϵ is a suffix of every string, and w is a suffix of itself.
11. (4 marks) Give a bottom-up (Shift-Reduce) parser PDA for the following grammar. $S \rightarrow X \mid Y$
$X \rightarrow X c \mid A$
$A \rightarrow a A b \mid \epsilon$
$Y \rightarrow a Y \mid B$
$B \rightarrow b B c \mid \epsilon$
12. Bonus: (3 bonus marks) Prove using the Pumping Lemma that the language L from question 6 is not regular; recall]
$L=\left\{w \in\{a, b\}^{*}\right.$: the latter half of the string contains only b 's $\}$. An example of a string in the language is $a b a a b a b b b b b b b$. In other words, the last a appears in the first half of the string. In odd strings, the middle symbol must be b.
