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Abstract We present a new algorithm for the Bump-Number problem: given a partial order of elements
or jobs, find a linear ordering of the jobs that extends the partial order and minimizes the number of jobs
scheduled immediately after one of its precedents in the partial order.

Polynomial time algorithms that solve this problem are known. The fastest achieve linear time in the
size of the transitive reduction of the poset, but are highly complex in the programming sense; the proofs of
correctness are long and involved; and to achieve the linear time bound, they rely on a somewhat elaborate
implementation of Union-Find algorithms for the special case that the union and find operations are known
in advance. We present a simple algorithm solving the problem efficiently (O(m + n logw), where w is the
width of the poset), using simple data structures, and with short proofs of correctness; on the cocomparability
graph, the algorithm runs in linear time. Our algorithms and proofs offer insight into the effectiveness of
Lexicographic Depth-First Search as a preprocessing step for certain algorithms on cocomparability graphs.
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1 Introduction

In this paper we consider a partial order on a set of elements or vertices as modelling a set of ordering
constraints on the elements. The problem we study here is the bump number problem, which can be posed as
a scheduling problem. Consider the elements of the partially ordered set as jobs to be scheduled on a single
processor. No job may be executed until its precedents have completed; and furthermore there is a unit cost
associated with scheduling a job u immediately after a job v which constrains it, i.e., if v < u in the partial
order, there is a cost associated with scheduling u immediately after v. This models a situation, for example,
in which the precedence constraints reflect that outputs from one job will be utilized as inputs to other jobs,
and the cost function reflects that there is a unit-cost communication delay when successive jobs are related
by the communication of outputs. The bump number problem seeks the find a total order consistent with the
partial order that minimizes the costs of precedence-related jobs being scheduled successively.

Consider the Tricky Poset, the Hasse diagram of which is given in Figure ??. The linear extension abcdegfh
has no bumps. However, any linear extension starting with abdc cannot be completed without introducing a
bump. Elements c and d are at the same depth and height, and each has the same number of upper covers,
ancestors, lower covers, and descendents; and yet the selection of c or d after ab determines whether a minimum
bump linear extension can be found.

Cocomparability graphs are graphs that correspond to a poset in the following manner: two vertices are
adjacent in the graph precisely if they are incomparable in the partially ordered set. This class of graphs

G. Pruesse
Vancouver Island University, Department of Computing Science, Nanaimo, BC, Canada
E-mail: Gara.Pruesse@viu.ca, WWW: http://www.csci.viu.ca/∼gpruesse

D. Corneil · L. Mouatadid
University of Toronto,
Department of Computer Science,
Toronto, ON, Canada



DRAFT

a

b c d

e f g

h

Fig. 1: The Tricky Poset. abdcfegh is a 1-bump greedy linear extension, but there is a 0-bump linear extension.

contains the interval graphs, and are a well-studied subclass of the asteroidal-triple-free graphs. A minimum-
bump ordering of the poset is equivalent to a minimum path cover of the associated cocomparability graph.
Every cocomparability graph that is Hamilton traceable has a zero-bump ordering in its associated posets,
and vice versa. Hence algorithms for minimum-bump orderings of posets can be used to solve minimum path
cover and Hamiltonian path problems in cocomparability graphs.

We present here an elegant, efficient algorithm to find minimum-bump orderings. Our algorithm is fast in
practice, and asymptotically achieves O(m + n logw) running time where n is the number of elements, m is
the number of covers relations (edges in the transitive reduction), and w is the width of the poset (the size
of the maximum antichain); alternatively, the algorithm can be made to run in time O(n+m′), where m′ is
the number of less-than relations (i.e., the number of edges in the transitive closure). Therefore the running
time is asymptotically as fast as the fastest known algorithm for minimum path cover on cocomparability
graphs [5], for which this algorithm also provides a solution, and is fast in practice but not linear time on
the more compact representation, the transitive reduction. Furthermore, the algorithm is much simpler and
is easier to implement than previously known algorithms, and has short proofs of correctness and complexity
analysis. In contrast, the algorithms that achieve linear time on the transitive reduction are extremely complex
to implement, and it is unkown by the authors whether any attempt has been made to do so.

These results will be of interest to researchers into algorithms for cocomparability graphs and subclasses
such as interval graphs, as these results provide a framework for understanding the efficacy of Lexicographic
Depth-First Search as a preprocessing step for Hamiltonicity, minimum path cover, and independent set
algorithms for these graph classes. Furthermore, a straightforward adaptation of the Greedlex algorithm,
applied to cocomparability graphs, yields a linear time algorithm algorithm to solve the Hamilton path and
minimum path cover problems on cocomparability graphs.

2 Previous work

The bump-number problem is related to two-processor scheduling, in the following manner. Recall that a
minimum bump linear extension v1v2 · · · vn that minimizes the number of vi where vi < vi+i – i.e., minimizes
the number of bumps. is one that has the fewest On the other hand, a two processor schedule for precedence-
constrained jobs, where the precedence constraints are captured by a poset on the jobs, is a linear extension
v1v2 · · · vn that can be divided into a sequence of pairs and singletons (e.g., (v1, v2), (v3)(v4, v5) · · · (vn−1, vn))
so that no bump appears within a pair.

The two processor scheduling problem arose out of scheduling theory, and was investigated by Fujii, Kasarni
and Ninarniya, [1] who in 1969 published a O(n4) algorithm for two processor schedule based on first finding
the transitive closure of the poset and then finding a matching. Following on this work, researchers sought
solutions that avoid the expensive step of transitively closing the partial order. Two different approaches
yielded results.

Coffman and Graham [2] employ lexicographic labelling as a kind of secondary sort to extend the partial
order already imposed; the resulting algorithm runs in O(n2). Later, Sethi [4] published a refinement of the
Coffman-Graham algorithm; it includes a compact and efficient algorithm for lexicographic labelling; the
remainder of the scheduling algorithm – given the labelling, find an optimal schedule – runs in O(nα(n)+m)
time, as it uses Union-Find data structures.
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Gabow’s algorithm for two-processor scheduling [6] processes the poset in levels, each level corresponding
to the elements at a given height. Elements in a given height form an antichain in the poset; Gabow’s two
processor scheduling algorithm pairs elements at the same height (level) when possible, and then employs
strategies to deal with levels that are populated by an odd number of elements. The algorithm was proved to
run in [running time here]. Later, Gabow and Tarjan devised an algorithm for Union-Find that runs in linear
time when the operations are known in advance; utilizing this yields a linear time two processor scheduling
algorithm [Gabow and Tarjan?].

Polynomial time algorithms were found for to find the bump number of a poset (Habib, Mohring and
Steiner). Then Schaffer and Simons (1986) used the Gabow two-processor scheduling algorithm as a basis for
a bump number algorithm, and thus with the Gabow and Tarjan speed-up were able to show that the bump
number problem could be solved in linear time.

We know of no actual implementation of the linear time algorithm for bump number (or two processor
scheduling). The main result of this paper is easily-stated theorems for the bump-number that lead to algo-
rithms for both problems that are trivial to implement and fast in practice. The theorems also lend insight
into the algorithms for Hamiltonicity and Minimum Path Cover problems for comparability graphs.

3 Definitions and Terminology

A multiset S1 is said to be lexicographically larger than a multiset S2 if it is a proper superset of S2 or if
max(S1 \ S2) > max(S2 \ S1). We will write S1 >lexico S2 to denote this relation. We use this notation
because we are reserving ”<” for the poset relation; but the lexicographic comparator operation for sets is
a standard comparator relation for sets. For example, {7, 5, 4, 4, 2, 2, 1} >lexico {7, 5, 4, 3, 2, 1, 1}, since the
largest number in which they differ is 4, and that occurs in the former set.

A poset P = (E,R) is a set of elements E and a reflexive, antisymmetric, transitive relation R. If (u, v) ∈
R, u 6= v, we say u is less than v in P and we denote this with u <P v, or simply u < v if the poset is
understood; and we use u ≤ v similarly. If neither (u, v) nor (v, u) are in R, we say u is incomparable to v,
and denote this with u||v. We use maxima(P ) and minima(P ) to denote the maximal and minimal elements
of P , respectively. The transitive reduction of a poset P is the set T ⊆ R such that (u, v) ∈ T and (v, w) ∈ T
implies (u,w) /∈ T ; in other words, T is the smallest set whose transitive closure is R. We call the relations in
the transitive reduction the covers relations of P ; if (u, v) ∈ R′ then we say v covers u and denote it u ≺P v
and v �P u; we use ≺ and � when the po set is understood. The Hasse diagram of a poset is the diagram of
the transitive reduction graph, with the minima at the bottom and maxima at the top; if u ≺ v in P then we
draw u below v and connect them with an edge.

A poset P ′ = (E′, R′) is an extension of P = (E,R) if E′ = E and R′ ⊇ R. A linear extension is an
extension that is also a total order. A poset P ′ = (E′, R′) is an induced subposet of P = (E,R) if E′ ⊆ E
and R′ = R∩E′×E′. We use P \S to denote the poset P induced on E \S. A filter of a poset is an induced
subposet that is closed under the covers relations (i.e., if x is in the filter, so is everything x covers). If P is
a poset and L a linear extension of P , then note that L \ S is a linear extension of P \ S. It is convenient
sometimes to use string operations such as concatenation (·) in manipulating linear extensions.

A chain in a poset is a sequence v1v2 · · · vk of elements such that vi < vi+1, ∀i, 1 ≤ i < k. The depth of an
element v in a poset, denoted depth(v), is the length of the longest chain that has v as its minimal element.

In the context of linear extensions and job scheduling, it is helpful to think of the relations R as precedence
constraints: if a ≺ b in P then a must appear before b in any linear extension of P , and the job a must be
completed before job b is begun.

The bump number of a linear extension L = x1x2 · · ·xn of P is the number of elements xi that are a
cover of their direct predecessor xi−1 in L. The bump number of P is the minimum bump number of any
linear extension of P . In constructing linear extensions or job scheduling, the notion of shelling the poset can
be useful – it consists in successively removing minimal elements from the poset. A shelling order for all the
elements of the poset is necessarily a linear extension, and vice versa.

A considerable amount of recent work has focused on applying Lexicographic Depth-First-Search to co-
comparability graphs to achieve fast algorithms to solve hamiltonicity problems and path cover problems on
that class of graphs. To illuminate the link between that work and the present work, we provide here some
definitions from the area of cocomparability graphs, and make the translation into the language of posets, in
which the present work is framed. Readers primarily interested in the bump number problem on posets can
jump to Section XXX without loss of continuity.
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3.1 Relationships with Co-comparability Graphs

An undirected graph G = (V,E) is a comparability graph if there is a poset P = (V,<P ) such that (u, v) ∈ E
if and only if u <P v or v <P u. A graph is a cocomparability graph if and only if its complement is a
comparability graph. The mapping from the posets to their associated cocomparability graphs is many-to-
one; the mapping establishes partition classes of posets, where a poset and its dual are in the same partition
(possibly with other posets that have the same comparability graph, and therefore the same cocomparability
graph). We will use the term “posets associated with G” to refer to the posets whose cocomparability graph
is G.

Cocomparability graphs are a graph class that contains the interval graphs, and are contained in the
asteroidal-triple-free graphs.

A total ordering π of the vertices of a cocomparability graph G = (V,E) is a cocomparability ordering or
cocomp ordering iff whenever u <π v <π w and (u,w) ∈ E(G) then either (u, v) ∈ E or (v, w) ∈ E. An
alternative characterization of cocomparability graphs is that a graph is cocomparability if and only if it has a
cocomp ordering. All such orderings are linear extensions of posets associated with the cocomparability graph
G, and indeed the associated posets partition the set of cocomp orderings of a cocomparability graph, by way
of the relation “is a linear extension of”.

A Lexicographic Depth-First Search ordering, or Lex-DFS ordering, of a graph is an ordering of the vertices
of the graph that corresponds to an order in which the vertices can be visited by depth-first search, labelling
vertices in the order they are visited, starting at an arbitrary vertex, and proceeding by successively selecting
the next vertex to visit by determining which one has the set of labels of visited neighbours that is lexico-
graphically largest. For example, if v1, v2, v3 is the order in which the first three vertices have been visited,
v3 being the most recently visited, and x has neighbours v1 and v3 whereas y has neighbours v2 and v3, then
y will be selected next if the choice is between x and y. For cocomparability graphs, the Lex-DFS orderings
that are also cocomp orderings have been of particular usefulness in algorithms for hamilton path, minimum
path cover, and independent set. [?,?,?]

A cocomparability graph can be compactly represented by one of its associated posets. For sparse posets
– the antichain on n elements, for example – the size of the Hasse diagram is O(n) whereas the cocom-
parability graph is O(n2). The relationship is not reciprocal: posets with dense Hasse diagrams also have
dense cocomparability graphs. Therefore one of the goals of pursuing cocomparability graph algorithms via
their representation as posets is to ascertain whether there are efficient algorithms in the size of the compact
representation. In essence, we ask: does the efficiency of, say, linear time algorithms for hamilton path in
cocomparabilty graphs rely on the generous size of the representation scheme for the input? We seek algo-
rithms on the poset representation that utilize the methods and insights of recent work on cocomparability
graphs, and that have similarly efficient running times even when measured as a function of the more compact
representation.

It is worth noting here that the running time of our algorithm is linear in the size of the the cocomparability
graph, and is therefore as efficient as the known minimum path cover algorithms for cocomparability graphs
[Cocomp MinPathCover]. Cocomparability graphs admit a representation that is (usually) smaller than the
graph itself: the transitive reduction of (any of) its underlying posets. Running time analysis for algorithms
solving the Min-Bump-Ordering/Min-Path-Cover problem may be linear in the size of the transitive closure,
as the most recent results on cocomparability graphs, but the transitive closure itself can be quadratic in the
size of more compact representation as a Hasse diagram, the directed graph representation of the transitive
reduction. The greedlex algorithm for bump number is is O(n log(w)+m), where w is the width of the Hasse
diagram, n the number of elements, m the number of edges in the transitive reduction. This is a tighter bound
than linear in the size of the transitive closure, regardless of poset width.

4 Lex Labellings of Posets

Definition 1 For a poset P = (E,R), a lexicographic labelling lex: E(P ) → Z is any labelling of the ele-
ments such that for any elements u and v in E, if the multiset of lex numbers of the upper covers of u is
lexicographically greater then the multiset of lex numbers of the uppers covers of v then lex(u) > lex(v); that
is:

{lex(v′) : v′ � v} >lexico {lex(u′) : u′ � u} ⇒ lex(v) > lex(u)
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Note also that a lexicographic labelling of a poset induces a lexicographic labelling of any filter or ideal of
the poset.

There are many lexicographic labellings of a poset. Two important types of lexicographic labellings are
the following: the parsimonious labelling, which gives all maxima the label 1 and then ascribes the minimum
possible label value to each element while adhering to the lexicographic rule; and the sequential labellings,
which label the t maxima with the numbers 1, 2, . . . , t, and ascribes labels lexicographically to the remaining
elements without label duplication.

The sequential labellings impose an arbitrary order on the maximal elements; the remainder of the labelling
is then essentially fixed by that order, except that ties must be broken when distinct elements have the same
upper-cover sets. Note that any sequential lex-labelling of a poset yields a total order of the elements –
indeed, it is the reverse of a linear extension of the poset. Since we will be jumping between representations
of the transitive closure and the transitive reduction, we need to confirm that lex labelling processes operate
identically on the two representations. In other words, lex labelling using the set of lex labels of upper covers
of each vertex v yeilds exactly the same labellings as using the set of lex labels of all w > v. The following
lemma makes that clear.

In the lemma and its proof, we call the set of all w > u the up-set of u. Call a labeling of the elements
of a poset a lex-plus labelling if it arises from lexicographically labelling the vertices using up-sets rather than
cover sets to determine the ordering of the labels. I.e., a function lex+: E(P ) → Z is a lex-plus labelling if:
for any elements u and v in E, if the multiset of lex+ numbers of the up-set of u is lexicographically greater
than the multiset of lex+ numbers of the up-set of v then lex+(u) >lex+(v).

Lemma 1 A labeling is a lex-plus labelling if and only if it is a lexicographic labeling.

Proof: This is easily proved by induction on the number of elements in the poset, once the following
observation is made. Given two elements x and y whose ancestors are already labelled, and where both the
lex and lex-plus labels are the same for those ancestors, then the largest lex-plus ancestor label at which they
differ will be the lex-plus label of a cover of x that is incomparable to y, without loss of generality. This is
also a largest lex label of a cover of x that is incomparable to y. If, on the other hand, they have the same
lex-label set of upper covers, they will also have the same lex-plus-label set of ancestors. In other words, x can
be lex-labeled before y if and only if it can be lex-plus-labelled before y, and the identical lex and lex-plus
labelling can be extended.

We are now ready to prove the following lemma.

Lemma 2 Let π : [n]→ V be a Lex-DFS cocomp ordering of cocomparability graph G. Then there is a poset
associated with G for which π−1 is a sequential lex-labelling.

Proof: The claim, restated in its specifics, is that if x1x2 · · ·xn is a Lex-DFS cocomp ordering of G, then
the labelling lex(xi) = i is a lexicographic labelling of a poset associated with G – in particular, the poset
where if (xi, xj) 6∈ E(G) and i < j then xi >P xj , so that xnxn−1 · · ·x1 is a linear extension of P .

Observe that, given a cocomp ordering x1x2 · · ·xn of any type (i.e., Lex-DFS or not), we can construct
an associated poset for the graph by directing all the edges (xi, xj) in the complement of G whenever i < j
– i.e., direct the edge towards the rightmost of the two vertices in the cocomp ordering; the resulting directed
graph is the transitive closure of a Hasse diagram of an associated poset (where all the edges are directed
downwards).

Clearly every cocomp ordering is the reverse of a linear extension of the poset that thus arises. Further-
more, if the cocomp ordering is Lex-DFS, then the process used by Lex-DFS to select the ith vertex xi will
choose a vertex/element with a lexicographically maximum set of labels among its neighbours in the cocom-
parability graph that are thus far labelled; this same vertex will have a lexicographically minimum set of
comparability neighbours among the vertices so far labelled, i.e., comparable to it and above it in the poset.
Since xnxn−1 · · ·x1 is a linear extension of P , all of xi’s upper covers will have been labelled before xi is
labelled, and no element y where y < x will be labelled before x. Therefore the process of Lex-DFS is identical
to the sequential lex-labelling of the poset defined above, except that the Lex-DFS is operating on neighbour-
hoods in the transitive closure, not the transitive reduction of the poset, as the lex-labelling does. However,
By Lemma 1, the use of the transitive closure edges gives a labelling that can also be achieved through using
only the transitive reduction.

It would be very interesting to find a linear time method for lexicographic labelling that work when the
input is a directed acyclic graph (DAG) that is neither the transitive closure nor the transitive reduction of the
DAG, but something in between, and that does not first convert to either the reduction or closure. However,
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the example of Figure REFERENCE gives a DAG (all edges are directed downwards) that contains some but
not all transitive edges; Sethi’s algorithm gives element 4 a smaller label than element 5, which contradicts
the lex-labelling definition.

4.1 Theorems about Lexicographic Labellings

It is easily seen that if depth(u) < depth(v) then lex(u) < lex(v) for any poset and any lexicographic labelling
lex; we state this in the following lemma, and provide a short proof.

Lemma 3 Let P be a poset with a lexicographic labelling lex. For any two elements u and v in P , if
depth(u) < depth(v) then lex(u) < lex(v).

Proof: We show that any label at a given depth d is greater than any label at depth d − 1, by induction
on depth d. When d = 0, the claim is trivially true. For d > 0, let v be any element at depth d and u an
element at depth d − 1. Note that v has an upper cover in depth d − 1, which by the inductive assumption
has a larger lex-label than any element covering u and therefore the multiset of lex-labels of upper covers of
v is lexicographically larger than multiset of lex labels of the upper covers of u, and hence lex(v) > lex(u) by
the definition of a lexicographic labelling. �

The following lemma captures the significance of lex-labellings for the algorithms that follow.

Lemma 4 (The Lex Lemma) Let P be a poset with a lexicographic labelling lex, and suppose lex(a) ≥ lex(b),
and there is an element c1 such that a||c1 and b ≺ c1. Then there exists an element c2 such that b||c2 and
a ≺ c2, and where lex(c2) ≥ lex(c1) .

Proof: This follows from the definition of lexicographic labelling. �

5 The Bump Number Algorithm

The Greedlex Algorithm for finding a linear extension with the minimum bump number proceeds by first
lexicographic labelling the poset, and then shelling minimal elements from the poset “greedily” (avoiding
creating a bump involving the element currently being shelled, if possible) and then within the set of choices
so allowed, selecting one that is lexicographically greatest.

Data: A non-empty poset P = (E,<) and lex : E → Z the lexicographic labelling of E
Result: A linear extension π of P with the minimum number of bumps, and bump is the bump

number for P
π is an initially empty shelling sequence
bump← 0
while P is not empty:

if there are any minima of P that are not upper covers of the last-shelled node:
select such a minimum that has maximum lex label
remove it from P and add it to the end of π

else:
(the last-shelled node was a unique minimum of P )
select a minimum with maximum lex label
remove it from P and add it to the end of π
bump← bump+ 1

endwhile
Algorithm 1: The Greedlex Bump Number Algorithm

The engine of the proof of correctness of Greedlex for computing the bump number is the Lex-Yanking
Lemma, stated below, and proved later as Lemma X. Lex-Yanking Property Let P = (E,R) be a poset with

lexicographic labelling lex. P has the lex-yanking property if the following holds: If P has a linear extension
that starts with b and has k bumps, and there is a minimum element a of P such that lex(a) ≥ lex(b), then
P has a linear extension that starts with a and has k or fewer bumps.
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The Lex-Yanking Lemma All posets have the lex-yanking property.

The implications of the Lex-Yanking Lemma are that, when constructing a minimum-bump linear extension
by shelling the poset (that is, repeatedly removing minimal elements from P , the shelling order being a linear
extension of P ), it is safe to select an element that has the greatest lex label if it is not a cover of the last-shelled
element (i.e., if it does not introduce a bump).

It remains, then, to determine the minimal element to shell when the ones with maximum lex-label are all
upper covers of the most recently shelled element. The greedlex algorithm, outlined above, selects an element
of maximum lex-label from among elements that do not cover the last-shelled element; if there are no such
elements (i.e., the last-shelled element was a unique minimum of the remaining poset), then it selects the
element with maximum lex-label from among the minima, and a bump is introduced.

We call a linear extension constructed in this way a greedlex ordering of the poset.

Definition 2 A greedlex ordering of a poset P is a shelling ordering of P that obeys the following constraints
on shelling: a) elements that are covers of the last-shelled element are not shelled, if alternatives exist; b)
among those that can be shelled in obedience to (a), an element with maximum lex-label is shelled.

We will provide the proof of the Lex-Yanking Lemma later in this paper, as Lemma 8. First, we will
show that if a poset P and all of its subposets have the lex-yanking property, then any greedlex ordering of
the poset is a minimum-bump linear extension. By proving this first as Lemma 7, we will be allowed, in our
inductive proof of the Lex-Yanking Lemma, to assume that when the inductive hypothesis can be applied to
a smaller poset, then greedlex orderings of the smaller poset have minimum bump number for that subposet.
This simplifies the proof.

First, a few lemmas that identify how we can modify linear extensions to get other linear extensions, and
what the consequences are for the bump number.

Lemma 5 (Yanking Lemma) If P is a poset and w is a minimum element of P , and there is a linear
extension L with k bumps, then w ·L \ {w} is also a linear extension and has bump number between k− 1 and
k + 1.

Proof: The theorem states that a minimal element can always be yanked to the front of the linear
extension, with an increase of at most one to the bump number. Let L = x1x2 · · ·xi−1wxi+1 · · ·xn. Then
wx1x2 · · ·xi−1xi+1 · · ·xn is also a linear extension with the same bumps as L except possibly with one
(xi−1, xi+1) created and possibly with one (w, xi+1) destroyed. �

Lemma 6 (Swapping Lemma) Let P be a poset that has a and b among the minimal elements of P , and let
L be a linear extension of P with k bumps. If a and b can be swapped without violating a precedence constraint
then the resulting linear extension has between k − 1 and k + 1 bumps.

Proof: If the swap does not violate precedence constraints, then both a and b are incomparable to all
elements between them; the fact that they are minimal means they are incomparable to elements to the left
of them. Hence swapping them can create or destroy only a bump involving the rightmost of a and b and its
successor in the linear extension. �

We now prove that the lex-yanking property is sufficient to ensure that a linear extension produced by the
greedlex algorithm has the minimum number of bumps.

Lemma 7 If P is a poset such that the lex-yanking property holds for it and all its induced subposets, then
any greedlex ordering of P has minimum bump number.

Proof: Let P be a poset that has the lex-yanking property, and all its induced subposets have the lex-
yanking property. Let L = x1x2 · · ·xn be any greedlex ordering of P , and let k be the number of bumps in
L.

Let us call an ordering u1u2 · · ·ui extensible if it is the prefix of some minimum-bump linear extension
of P . We are claiming that the prefixes x1 · · ·xi of L are all extensible. We proceed by induction on i. The
empty prefix is clearly extensible.

Suppose that x1 · · ·xi is extensible. If xi+1 does not exist, we are done, so hereafter in the proof we assume
i < n and xi+1 exists.
Case 1. xi+1 has the maximum lex-label of all remaining elements. There are two sub-cases. First, if xi||xi+1

(i.e., no bump is introduced directly after xi): given that x1 · · ·xi is extensible, then x1 · · ·xi+1 is extensible,
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by the lex-yanking property. Second, we consider the case where xi ≺ xi+1. The fact that greedlex selected
xi+1, an upper cover of the last-shelled element xi, implies that all remaining elements are comparable to xi,
so any extension of x1 · · ·xi, including the least-bump linear extension, will have a bump after xi, and by the
lex-yanking property of the induced subposet, xi+1 can be selected to extend the prefix.
Case 2: xi+1 does not have the maximum lex-label of all remaining elements. Then those unshelled elements
with higher lex-label than xi+1 are comparable to xi whereas xi+1 is not – this is a consequence of the
Greedlex Algorithm’s selection criteria.

Since x1 · · ·xi is extensible, there is a linear extension x1 · · ·xiyi+1 · · · yn that realizes the minimum bump
number of P .
Case 2(a): If xi||yi+1, then lex(yi+1) ≤ lex(xi+1), and therefore by the lex-yanking property, there is a linear
extension of P \ {x1, . . . , xi} that starts with xi+1 and has no more bumps than yi+1 · · · yn; attaching this
suffix to the prefix x1 · · ·xi yields a linear extension of P with the same or fewer bumps as x1 · · ·xiyi+1 · · · yn,
which has the minimum number. Hence x1 · · ·xi+1 is extensible.
Case 2(b): If xi ≺ yi+1, then there is a bump xi, yi+1. Note that xi+1 is a minimum of the poset P \
{x1 · · ·xi}; therefore, by Lemma 6, we can yank xi+1 to the front of yi+1 · · · yn and obtain a linear extension
of P \ {x1 . . . xi} that starts with xi+1 and has no more than one bump more than does yi+1 · · · yn. When
re-attached to the prefix x1 · · ·xi, this results in the sure destruction of one bump and, by the Yanking
Lemma, the possible creation of one bump. Hence the resulting linear extension has no more bumps than
x1x2 · · ·xiyi+1 · · · yn, which has the minimum number of bumps for P . Therefore x1 · · ·xixi+1 is extensible.

Hence by induction, the greedlex ordering x1x2 · · ·xn is a minimum-bump linear extension of P . �

We are now ready to prove the Lex-Yanking Lemma for Bump Number.

Lemma 8 (The Lex-Yanking Lemma) All posets have the lex-yanking property.

Proof: The proof is by induction on |E|. The property is clearly held by posets on zero or one element.
Let P be a poset on n > 1 elements. Assume the lex-yanking property is held by all posets on fewer elements;
therefore, as a consequence of Lemma 7, we may assume that greedlex orderings are minimum-bump for
smaller posets.

If P is a poset with only one minimal element, then the selection of the first element of any linear extension
is fixed, and the Lemma is trivially true.

So let us turn to the remaining case: let a and b be any minimal elements of P with lex(a) ≥ lex(b), and
let L be a linear extension of P that starts with b and has k bumps; we will use L = by2y3 · · · yt−1ayt+1 · · · yn
to denote the various constituents of L. Let L′ be the linear order L induces on the set E \{b}; hence L = bL′.

The poset P \ {b} is smaller than P , so by the inductive hypothesis any greedlex ordering of P \ {b} has
the minimum number of bumps for that poset. Let L′

g = x2x3 · · ·xi−1axi+1 · · ·xn be a greedlex ordering of
P \ {b}. The fact that greedlex did not pick a until after x2, . . . xi−1 means that lex(xj) ≥ lex(a) ≥ lex(b),
∀j, 2 ≤ j ≤ i−1. It follows that b 6≺ xj ,∀j, 2 ≤ j ≤ i−1, so a and b can be swapped in bL′

g without violating
precedence. If no new bump is introduced, then swapping a and b in bL′

g gives a linear extension of the same
(or smaller) bump number as L, as required by the Lemma.

If bumps are introduced by the swap, then by the Swapping Lemma, it is at most one bump, and that
only if b ≺ xi+1 and a 6≺ xi+1.

If that is so, and yet lex(a) ≥ lex(b), then there is some c′ where a ≺ c′, b||c′ and lex(c′) ≥ lex(xi+1),
by the Lex Lemma. Note that it is possible that c′ is not a minimum in P \ {a, b, x1, · · · , xi−1}. Let c be a
descendent of c′ that is a minimum in that poset, and observe that c||b and lex(c) ≥ lex(c′) ≥ lex(xi+1). Then
by the inductive hypothesis, there is a linear extension of P \ {a, b, x1, . . . , xi−1}, call it cL′′, that starts with
c and has no more bumps than xi+1 · · ·xn. Hence the linear extension ax1 · · ·xi−1bL

′′ has no more bumps
than L. �

Theorem 1 Any linear extension constructed by the Greedlex Algorithm has minimum bump number.

Proof: By definition, the Greedlex Algorithm produces a greedlex ordering of the input poset. By Lemma
XXX, any greedlex ordering is minimum-bump if the poset (and all its subposets) has the lex-yanking property.
By the Lex-Yanking Lemma, every poset has the lex-yanking property. �
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DRAFT

6 Implementation and Analysis

The Greedlex Algorithm for Bump Number is presented below in greater detail, to permit running-time
analysis.

Data: A non-empty poset P given as a set E and for each u in E, methods to iterate through the upper covers of
u, the lower covers of u and the ability to test if u covers v; and lex[E(P )] a lexicographic labelling of E

Result: A linear extension π of P with the minimum number of bumps
i← 0
bumps← 0
for u ∈ min(P ):

Insert u into the priority queue using lex(u) as the key
repeat

if priority queue is empty:
bumps← bumps+ 1
for v ∈ (uppercovers(π[i])∩minima(P )):

Insert v into the priority queue
else:

i← i+ 1
π[i]← maximum element in priority queue
remove maximum element from priority queue
remove π[i] from P
for v ∈ (uppercovers(π[i− 1])∩minima(P )):

insert v into the priority queue with lex(v) as key
until i = n;

Algorithm 2: The Greedlex Bump Number Algorithm in greater detail

We proceed to outline our implementation, as the basis for our complexity analysis. We take the elements in
the poset to be {1, 2, . . . , n}, and the number of covers relations to be m, and the up-degree and down-degree
of v to be the number of upper covers of v and number of lower covers of v respectively. We can implement
data structures for the upper cover lists and lower cover lists as linked lists for each element, of size linear in
the number of upper covers and lower covers respectively for each element; we assume that the poset data is
given in this form (if only the upper covers lists is given, we can construct the lower cover lists in linear time).
We pre-label the elements using the linear time lexicographic labelling algorithm of Sethi.

Each element is inserted and removed from the priority queue exactly once. The priority queue always
contains a subset of some antichain in the poset (the priority queue elements are all minimal in the current
poset P ). Therefore the Remove-Max operations on the priority queue, as well as the insert operations, each
run in time O(logw), where w is the width of the input poset.

The test for inserting elements into the priority queue (i.e., the last line of the “else” loop) requires the
ability to test whether an element is minimal in the current poset. We accomplish this as follows: maintain
an array numLowerCovers[v], where v runs from 1 to n; numLowerCovers[v] is initially set to be the number
of lower covers of v in the input poset P . When we shell an element u from the poset (“remove π[i] from
P ”), we traverse its list of upper covers; for each element v that is an upper cover of u, we decrement
numLowerCovers[v], and if that number is now zero, we insert it into the priority queue. In that way, the
two for-loops nested within the if-clause and the else-clause can be implemented to take a total time of
O(m + n logw) over the entire run of the program, including the priority queue inserts. Hence the total
running time of the algorithm is O(m+ n logw).

The fastest known algorithm for bump number is O(m+n) [7]; that algorithm has not, as far as is known
by the authors, been implemented, and would be extremely complex to implement. The Greedlex Algorithm
is simple to implement; in fact it has been given as an exercise in undergraduate algorithms course. The
implementation is very fast even on large posets of 25,000 elements. [give timing details.]
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