Digital Logic and Computer Organization

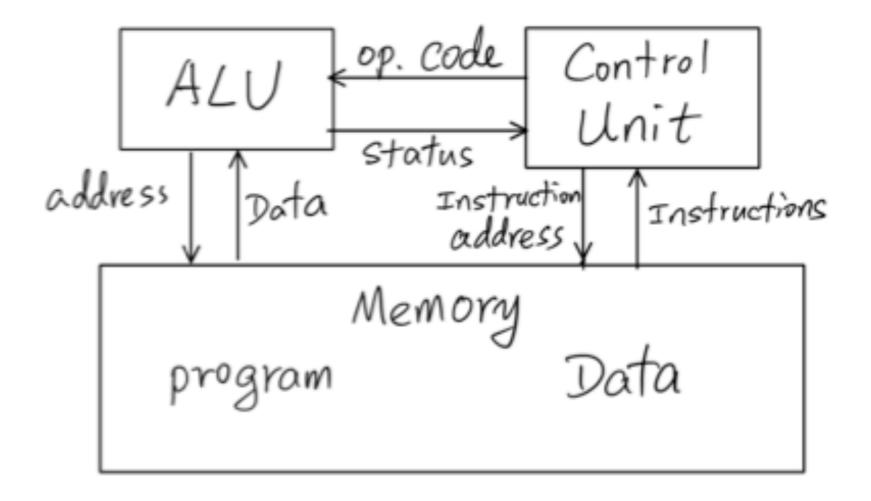
Introduction

Logistics

- Lectures & Labs
- Assessment
- Resources
- Academic Integrity

Overview

- Number Systems and Codes
- Boolean Algebra
- Combinational Circuits
- Sequential Circuits
- CPU, Memory, etc
- Verilog

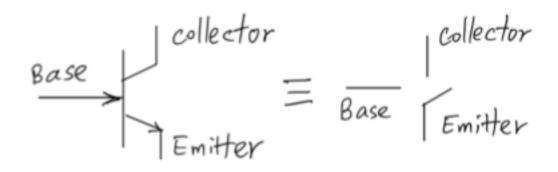

Learning Outcomes

- master the standard number and code systems;
- analyze and design combinational circuits per specification;
- analyze and design some typical sequential circuits per specification;
- simulate and test designed combinational and sequential circuits using Verilog
- enumerate typical challenges and common solution ideas in microcomputer system design.

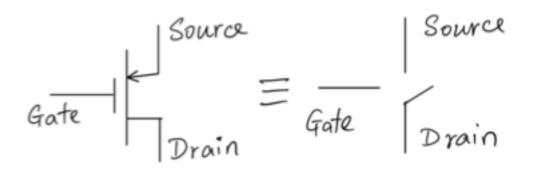
Computer Organization

- CPU (microprocessor)
 - ALU (consists gates to perform arithmetic and logical operations)
 - register
 - control unit
- memory: address, little/big endian
 - RAM
 - ROM
 - flash memory: EPROM
- bus
- I/O (parallel and/or serial)
- chip (integrated circuit package)

Von Neumann Structure


Digital Circuits

- Two types on logical level
 - combinational circuits stateless
 - sequential circuits with memory of present states


Circuit Elements/Switches

A node
$$\xrightarrow{\pm}_{+}$$
 Cathode
 $\equiv \xrightarrow{+}_{+}$ Switch

diodes

bipolar junction transistors

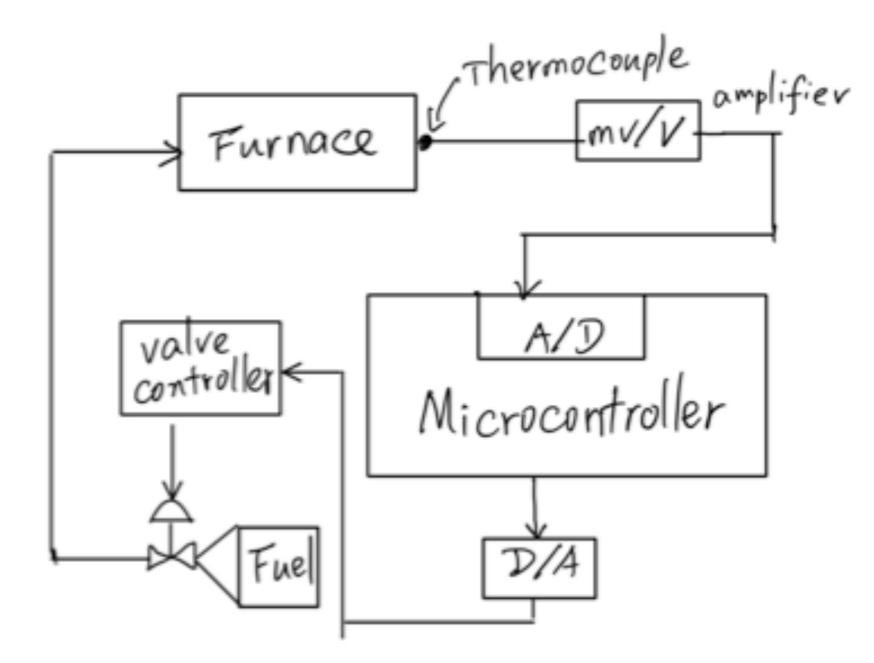
MOS transistors

Design

- Three levels of design
 - System level design: build a computer by interfacing CPU, memory, and I/O, peripheral chips
 - Logic level design: build a digital component using logical gates
 - Device level design: build gates using transistors
- Design techniques (algorithms and analysis)
- Computer Aided Design (CAD) Tools
 - Verilog (IEEE 1364 in 1995)
 - VHDL (IEEE 1076 in 1987)

Integrated Circuits

- One or many gates are fabricated on a single silicon chip and packaged in a package
- ICs are typically classified as
 - Small Scale Integration (SSI)
 - less than 10 gates, e.g. multiple NAND gates
 - Large Scale Integration (LSI)
 - up to 1000 gates, e.g. memory chips, or an 8-bit microprocessor
 - Very Large Scale Integration (VLSI)
 - more than 5,000 gates (or 500,000 transistors) , e.g. microprocessor


IC Technology

- Full Custom: design from scratch and manufacture
- Semi Custom: design from pre-existing components (gates) and assemble
- Field Programmable Gate Array: reconfigure the manufactured hardware sold off-the-shelf to meet specific requirements

Microcomputer & Microcontroller

- Microcomputer: consists microprocessor (CPU) chip, I/O chips, and memory chips where programs (instructions and data) are stored.
- Microcontroller: a single chip containing CPU, memory, Input/ Output and peripherals which typically contains I/O, timers, A/D converter, serial I/O, etc. Some of its applications:
 - Automotive
 - Barcode readers
 - Card key readers
 - Robotics

Microcontroller Application Example

Design Process

- Product description
- Define specification
- Circle of (re)design, simulation, evaluation
 - Capture: schematic
 - Minimization and synthesis
 - Testing: behaviour, timing
- Circle of prototype implementation, testing, evaluation, debugging (even go back to redesign)
 - Testing: behaviour, timing, manufacture
- Deliver a finished product

Rules of Thumb

- Advances in design technology lags advances in processor and IC technologies
- Product success is influenced by time-to-market
 - first to market will success
 - second to market will survive
 - third to market will fail