Digital Logic and Computer Organization

Number Systems and Codes

Integers

- Base n representation
- Base 2 representation of negative integers
 - sign magnitude
 - 1's complement
 - 2's complement
- Binary-Coded-Decimal (8421 code) for integers
- Gray code

Characters

- ASCII
- EBCDIC
- Unicode

System Defects

- Fault is a flaw
- Error is an observable difference between actual output and expected output
 - Dijkstra: program testing can only be used to show the presence of bugs and not their absence
- Failure is the inability of the system (or component) to perform its required function according to its specification

Data Communication Faults/Errors

- Faults
 - Interference: E.M. radiation
 - Distortion: medium blocks some frequencies
 - Attenuation: signal becomes weaker over long distances
 - Protocol mismatch: big-endian vs. little-endian
- Errors
 - single bit errors
 - Burst (multi bit) errors
 - erasure (ambiguity)

Error Detection/Correction

Error Codes

- Parity bit
 - Even parity generator

Even parity checker

Hamming Codes (Turing Award 1968)

- Single bit error correction
- use r parity bits to protect (2^r r 1) data bits
 - number the bits' positions from 1
 - bits in the position of powers of 2 are parity bits (p1 in position 1, p2 in position 2, p3 in position 4, p4 in position 8, and so on)
 - rest bits are data bits
- Generator: Pi = ⊕ all bits whose i's position is 1
- Checker: Ci = Pi ⊕ all bits Pi covers
- Syndrome: ... C3 C2 C1 collectively referred to as the syndrome

Extended Hamming Code

- single bit error correction
- double bit error detection
 - example, when r = 3 to protect 4 data bits, add an extra parity p4
 - $p4 = p1 \oplus p2 \oplus d1 \oplus p3 \oplus d2 \oplus d3 \oplus d4$
 - $c4 = p4 \oplus p1 \oplus p2 \oplus d1 \oplus p3 \oplus d2 \oplus d3 \oplus d4$

Syndrom and c4 Inference

- c4 = 0 and syndrome $= 0 \Rightarrow$ no error
- c4 <> 0 and syndrome <> 0
 ⇒ single bit error (can be corrected)
- c4 = 0 and syndrome <> 0
 ⇒ double bit error (detected, but can't be corrected)
- c4 <> 0 and syndrome = $0 \Rightarrow p4$ in error

Burst Errors

- Pick a fixed width, wrap data bits in lines
- From Hamming blocks along the "vertical" direction rather than the "horizontal" direction

