Digital Logic and Computer Organization Number Systems and Codes

Integers

- Base n representation
- Base 2 representation of negative integers
- sign magnitude
- 1's complement
- 2's complement
- Binary-Coded-Decimal (8421 code) for integers
- Gray code

Characters

- ASCII
- EBCDIC
- Unicode

System Defects

- Fault is a flaw
- Error is an observable difference between actual output and expected output
- Dijkstra: program testing can only be used to show the presence of bugs and not their absence
- Failure is the inability of the system (or component) to perform its required function according to its specification

Data Communication Faults/Errors

- Faults
- Interference: E.M. radiation
- Distortion: medium blocks some frequencies
- Attenuation: signal becomes weaker over long distances
- Protocol mismatch: big-endian vs. little-endian
- Errors
- single bit errors
- Burst (multi bit) errors
- erasure (ambiguity)

Error Detection/Correction

Error Codes

- Parity bit
- Even parity generator

- Even parity checker

Hamming Codes (Turing Award 1968)

- Single bit error correction
- use r parity bits to protect $\left(2^{\wedge} r-r-1\right)$ data bits
- number the bits' positions from 1
- bits in the position of powers of 2 are parity bits (p 1 in position $1, \mathrm{p} 2$ in position 2, p3 in position 4, p4 in position 8, and so on)
- rest bits are data bits
- Generator: $\mathrm{Pi}=\oplus$ all bits whose i's position is 1
- Checker: $\mathrm{Ci}=\mathrm{Pi} \oplus$ all bits Pi covers
- Syndrome: ... C3 C2 C1 collectively referred to as the syndrome

Extended Hamming Code

- single bit error correction
- double bit error detection
- example, when $r=3$ to protect 4 data bits, add an extra parity p4
- $\mathrm{p} 4=\mathrm{p} 1 \oplus \mathrm{p} 2 \oplus \mathrm{~d} 1 \oplus \mathrm{p} 3 \oplus \mathrm{~d} 2 \oplus \mathrm{~d} 3 \oplus \mathrm{~d} 4$
- $\mathrm{c} 4=\mathrm{p} 4 \oplus \mathrm{p} 1 \oplus \mathrm{p} 2 \oplus \mathrm{~d} 1 \oplus \mathrm{p} 3 \oplus \mathrm{~d} 2 \oplus \mathrm{~d} 3 \oplus \mathrm{~d} 4$

Syndrom and c4 Inference

- c4 $=0$ and syndrome $=0 \Rightarrow$ no error
- c4 <> 0 and syndrome <> 0 \Rightarrow single bit error (can be corrected)
- c4 $=0$ and syndrome $<>0$
\Rightarrow double bit error (detected, but can't be corrected)
- c4 <> 0 and syndrome $=0 \Rightarrow$ p4 in error

Burst Errors

- Pick a fixed width, wrap data bits in lines
- From Hamming blocks along the "vertical" direction rather than the "horizontal" direction

