Digital Logic and Computer Organization
 Combinational Logic - Analysis and Design

Combinational Circuit

- A circuit consists of an inter-connection of logic gates.
- A logic circuit is combinational if its output(s) are a function of only the present inputs at any time.
- The inputs to a circuit can be viewed as binary variables from an external source.
- The outputs of a circuit are variables produced by the circuit based on the input signals and go to external destinations.
- For n input variables, there are $2^{\wedge} n$ possible combination of the binary inputs.
- For each distinct input combination, there is one value for each output variable.

Analysis of Combinational Circuits

- How to make sure the circuit to be analyzed is combinational? - In the schematic, there is no feedback paths or memory elements.
- Analyze by establishing a truth table: for each input combination, trace the schematic to establish its output.
- Literal analysis
- Use meaningful symbols to name the output of each gate in the circuit;
- Starting from the gates whose inputs are circuit inputs, find the Boolean functions for these gates;
- For those gates whose inputs include the output of other gates whose functions are already established, find the Boolean functions for these gates;
- Repeat the previous step until the Boolean function of the circuit's output is found.

Design Procedure

- From the specifications of the circuit, determine the required number of inputs and outputs and assign a symbol to each; (determine the interface of the circuit;)
- Derive the truth table that defines the required relationship between inputs and outputs; (determine the behaviour of the circuit;)
- Obtain the simplified Boolean function for each output as a function of the input variables; (determine the functionality of the circuit;)
- Draw the logic schematic; (determine the structure of the circuit;)
- Verify the correctness of the design by building a prototype or by simulation.

Design Examples/ Applications

- Half Adders

Half Adder
Augend Addend sum output carry

Augend $A^{\text {Input }}$		B	$S^{\text {Output }}$	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

$$
\begin{aligned}
S & =\bar{A} B+\bar{A} \bar{B} \\
& =A \oplus B \\
C & =A \cdot B
\end{aligned}
$$

Full Adder

- Full Adder: Sum-of-Product; 2 Half Adders and an OR

> Full Adder

\[

\]

Binary Adder

- Binary Adder: Multi-bit ripple carry Adder

4 -bit Binary Adder

Binary Adder

- Issue: Carry propagation causing delays
- Solution: Carry lookahead

$\begin{array}{ll}\text { Carry Propagate } & P_{i}=A_{i}(+) B_{i} \\ \text { Carry Generate } & G_{i}=A_{i} B_{i}\end{array}$

$$
\begin{aligned}
& C_{0}=\text { input Carry } \\
& C_{1}=G_{0}+P_{0} C_{0} \\
& C_{2}=G_{1}+P_{1} C_{1}=G_{1}+P_{1}\left(G_{0}+P_{0} C_{0}\right) \\
& =G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{0} \\
& C_{3}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{0}
\end{aligned}
$$

Binary Adder with Lookahead

Binary Subtractor

Magnitude Comparator

$$
\begin{aligned}
& x_{i}=A_{i} B_{i}+\bar{A}_{i} \bar{B}_{i} \quad \text { for } i=0,1,2,3 \\
& F_{A B B}=x_{3} \cdot x_{2} \cdot x_{1} \cdot x_{0} \\
& F_{(A>B)}=A_{3} \bar{B}_{3}+x_{3} A_{2} \bar{B}_{2}+x_{3} x_{2} A_{1} \bar{B}_{1}+x_{3} x_{2} x_{1} A_{0} \bar{B}_{0} \\
& F_{(A B B)}=\bar{A}_{3} B_{3}+x_{3} \bar{A}_{2} B_{2}+x_{3} x_{2} \bar{A}_{1} B_{1}+x_{3} x_{2} x_{1} \bar{A}_{0} B_{0}
\end{aligned}
$$

Decoder

3- tiv-: decoder decoder
with enable
 (o means selected)

E	x	y	D_{0}	D_{1}	D_{2}	D_{3}
1	x	x	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

Encoder \& Priority Encoder

Input						
	output					
D_{0}	D_{1}	D_{2}	D_{3}	x	y	$x=D_{2}+D_{3}$
1	0	0	0	0	0	$y=D_{1}+D_{3}$
0	1	0	0	0	1	
0	0	1	0	1	0	
0	0	0	1	1	1	

Input					output		
D_{0}	D_{1}	D_{2}	D_{3}	x	y	Valid	
0	0	0	0	x	x	0	
1	0	0	0	0	0	1	
\times	1	0	0	0	1	1	
\times	\times	1	0	1	0	1	
\times	\times	1	1	1	1	1	

Multiplexer

Implement Function using Multiplexer

Input				output	
X	Y	Z	F		
0	0	0	0	$F=0$	
0	0	1	0		
0	1	0	1	$F=\bar{Z}$	
0	1	1	0		
1	0	0	0	$F=Z$	
1	0	1	1	F	
1	1	0	1	$F=1$	
1	1	1	1		

Binary Multiplier

$$
\begin{array}{rrrrrr}
& B_{3} & B_{2} & B_{1} & B_{0} \\
\times & & & A_{1} & A_{0} \\
\hline & A_{0} B_{3} & A_{0} B_{2} & A_{0} B_{1} & A_{0} B_{0} \\
\pm & A_{1} B_{3} & A_{1} B_{2} & A_{1} B_{1} & A_{1} B_{0} & \\
\hline P_{5} & P_{4} & P_{3} & P_{2} & P_{1} & P_{0}
\end{array}
$$

