Database Management Systems

Relational Algebra

Query Languages

- Query languages are programming languages, but not general purpose programming languages.
- Query languages are NOT Turing-complete languages.
- Advantage:
 - easy to learn and simple to use
 - leaves the compiler (optimizer) sufficient room to generate highly optimized executable code

Algebra

- Algebra in general consists of operators and atomic operands.
- In Relational Algebra, atomic operands are:
 - Variables that stand for relations
 - constants, which are finite relations.
- Expressions of relational algebra are usually referred to as queries.
- Relational algebra uses set semantics (a relation is a set of tuples and duplicates are removed automatically in the result relation).

Operations of Relational Algebra

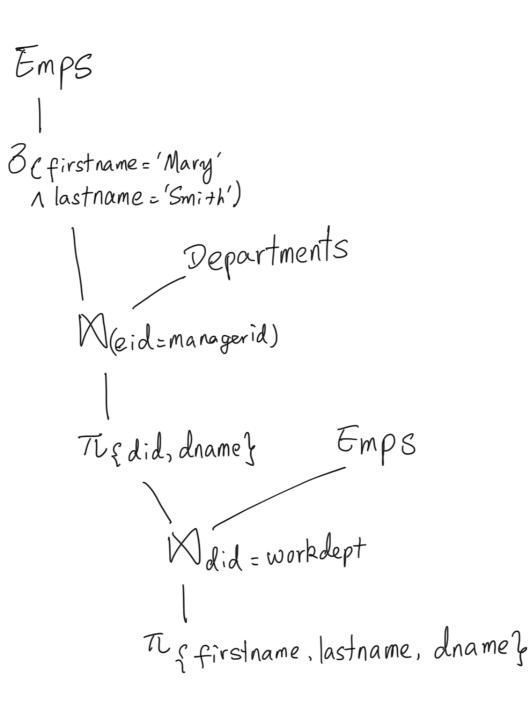
- set operations
- operations that remove parts of a relation
- operations that combine the tuples of two relations
- operations to renaming relations or attributes

Set Operations

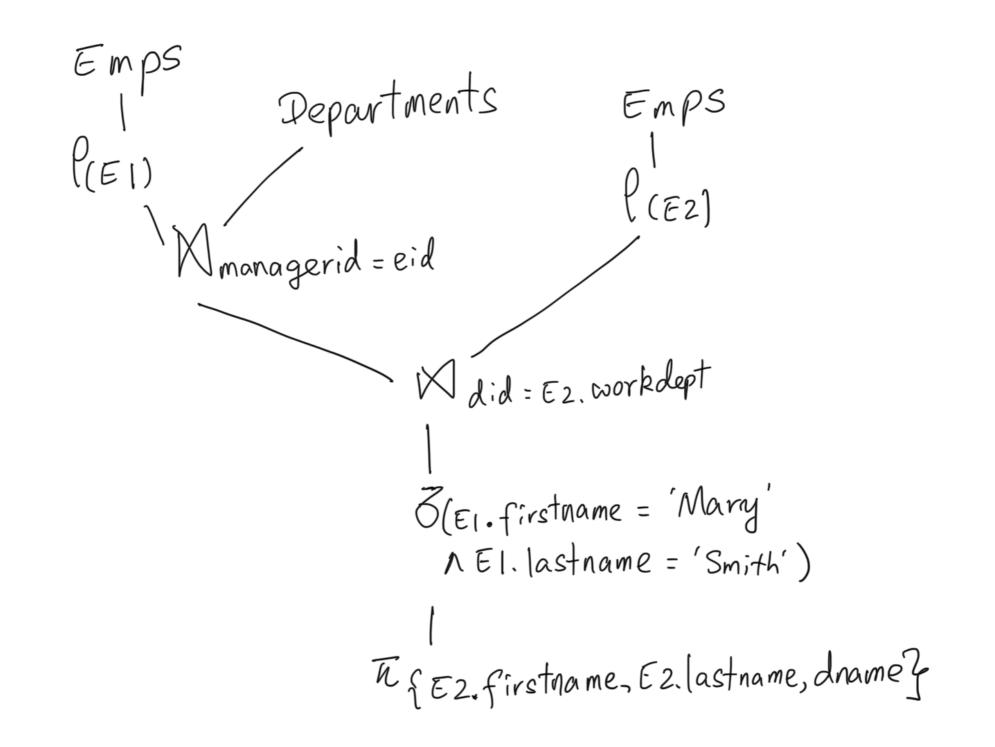
- set union, Relation_1 \cup Relation_2
- set intersection, Relation_1 ∩ Relation_2
- set difference, Relation_1 Relation_2
- they are all binary operators
- The conditions to apply these operations:
 - Both relations must be union compatible (i.e., with identical schema)
 - must have identical sets of attributes and types for each attribute must be the same
 - attributes must be ordered the same way

Other (Database) Operations

- Unary operators:
 - Projection, π{list of attribute names} (Relation)
 - Selection, $\delta_{(condition)}$ (Relation)
 - renaming, ρ_{S(A1,A2,...,An)}(Relation)
- Other binary operators
 - cartesian product (cross product), Relation_1 × Relation_2
 - join, Relation_1 ⋈_(condition) Relation_2
 = combination of cartesian and selection, δ_(condition) (Relation_1 × Relation_2)
 - natural join, Relation_1 ⋈ Relation_2


Algebra Queries

- Relational Algebra is a functional programming language
- Relation(s) in, relation out for all operators
- Nest operations take the output of previous operation as the operand of the next operation
- Expressiveness of a query language relational completeness: the capability of forming arbitrarily complex query to access database data without using either iteration or recursion.


Algebra Query Example

- For each employee who works in a department managed by Mary Smith, list his/her first and last name and the department's name.
 - P_{firstname, lastname, dname} (P_{did,dname}(S_(firstname='Mary' and lastname='Smith')Emps J_(eid=managerid) Departments)) J_(did = workdept) Emps)

Algebra Query Tree

Equivalent Queries

