
Database
Management Systems

Datalog (Domain/Tuple Calculus)

Datalog
• Datalog is a logical query language (“database logic”).

• Datalog query consists of if-then rules.

• Each of these rules expresses the idea that from certain
combination of tuples in certain relations, we may infer
that some other tuple must be in some other relation, or in
the answer to a query.

• Datalog is a declarative language. (SQL is also
declarative, while Relational Algebra is functional.)

Atoms
• An atom is a boolean function. There are two types of atoms in Datalog:

Arithmetic and Predicate.

• Arithmetic atom: comparison between two arithmetic expressions

• Predicate (relational) atom: a predicate followed by its arguments

• Each predicate takes a fixed number of arguments.

• predicate atom tests the membership:  
Lend(PA, PB, 1000) ==> Is it true that elements PA, PB, and 1000 form a
tuple that is in the set Lend? ==> Is it true that person PA lend person PB
$1000?

• When using Datalog to query database data, the predicates are database
relations. 
Departments(101, ‘Public Relations’, 1001) ==> Is it true that the tuple  
<101, ‘Public Relations’, 1001> is in the table Departments in the database?

Rules and Queries
• A Datalog rule consists of:

• a relational atom called the head

• the symbol ::=, which often read as “if”

• a body consisting of one or more atoms, called subgoals, which
may be either relational or arithmetic. Subgoals are connected by
AND, OR and NOT.

• A Datalog query is a collection of one or more rules.

• Datalog is relationally complete.  

Extensional vs Intensional

• Predicate (Relational) atom can be either extensional or
intensional.

• Extensional predicates: whose relations are stored in a
database (they already exist).

• Intensional predicates: whose relations are computed by
applying one or more Datalog rules (they exist because
somebody’s intent).

Set Operations

• Union: use multiple rules with the same head 
Result(a, b) ::= rule1 
Result(a, b) ::= rule2

• Intersection: Two subgoals connected with AND 
Result(a, b) ::= T1(a, b) AND T2(a, b)

• Set difference: R AND NOT S 
Result(a, b) ::= T1(a, b) AND NOT T2(a, b)

Database Operations

• Projection:  
Result(fn, ln) ::= Emps(_, fn, ln, _, _, _)

• Selection:  
Result(fn, ln) ::= Emps(_, fn, ln, salary, _, _)  
 AND salary > 50000

• Join: using same variables in multiple relational subgoals 
Result(fn, ln, dn) ::= Emps(_, fn, ln, _, did, _) 
 AND Departments(did, dn, _)

Datalog Example
• For each employee who works in a department managed by

Mary Smith, list his/her first and last name and the
department’s name. 
Result(fn, ln, dn) ::= Emps(eid, x, y, _, _, _) 
 And Departments(did, dn, eid) 
 And Emps(_, fn, ln, _, did, _) 
 And x = ‘Mary’ And y = ‘Smith’

• Equivalent one: 
Result(fn, ln, dn) ::= Emps(eid, ‘Mary’, ‘Smith’, _, _, _) 
 And Departments(did, dn, eid) 
 And Emps(_, fn, ln, _, did, _) 

Safety (Unsafe Queries)
• Two potential unsafe factors:

• top negation 
Result(dn) ::= NOT Departments(_, dn, _)

• infinite domain involving arithmetic operations 
Result(x) ::= Emps(_, _, _, salary, _, _) AND x > salary

• Safety condition: 
Every variable that appears anywhere in the rule must
appear in some non-negated, relational subgoal of the body.  

