
Database 
Management Systems

Database Design (I)



Example of Bad Design
Sno Name Cno Title Term Grade

123 J King CSC 120 Introduction of CS Fall 2005 B

123 J King CSC 240 Data Structures Fall 2006 C

123 N King CSC 340 Operating Systems Fall 2007 A

321 M Ng CSC 120 Introduction of CS Fall 2005 A

222 P Smith CSC 120 Introduction of CS Fall 2005 B



What’s Wrong?

• Redundant data


• Update problem (change the title of a course)


• Insert problem (add a new course)


• Delete problem (remove a student)



How to Judge a Schema? 

• no redundant data


• easy to query


• easy to update


• only allow well-behaved instances


• Any concrete theory basis? 



Functional Dependency 
Definition

Let R be a relation schema, and X,Y ⊂ R, where X, Y and R 
are sets of attributes. The functional dependency 


X → Y (X functionally determines Y (in R) )


holds on R if whenever an instance of R contains 
two tuples t and u such that t[X] = u[X], then it must also be 
true that t[Y] = u[Y].



Example of FDs
• {Sno} → {Name}, or Sno → Name


• Cno → Title


• {Sno, Cno, Term} → {Grade},  
or Sno, Cno, Term → Grade


• Where do they come from? 


• From domain knowledge


• From inference



Reasoning About FDs
• Armstrong’s Axioms (X, Y, Z are all sets of attributes)


• (reflexivity) Y ⊆ X ⇒ X → Y (trivial functional dependency)


• (augmentation) X → Y ⇒ XZ → YZ


• (transitivity) X → Y, Y → Z ⇒ X → Z 


• Additional rules can be derived


• (union) X → Y, X → Z ⇒ X → YZ


• (decomposition) X → YZ ⇒ X → Y and X → Z



Implication for FDs
• closure of F, denoted as F+ 

R |= F ⇔ R |= F+


• Relation schema R satisfies all the functional dependencies in the set F if and 
only if relation schema R satisfies all the functional dependencies in the set of F 
closure.


• In other words, all the functional dependencies in the set F holds on relation R 
if and only if all the functional dependencies in the set F closure holds on 
relation R.


• the axiom is


• sound 


• complete 



Keys: Formal Definition

• superkey: K ⊆ R is a superkey for R if functional 
dependency K → R holds on R. 


• candidate key: K ⊆ R is a candidate key for R if K is a 
superkey and no subset of K is a superkey. 


• primary key: a candidate key chosen by the database 
designer(s)



Key Example
• R = {SIN, sno, name, cno, title, term, grade} = {ISNCTEG}


• F =  
 {SIN → Sno, Sno → SIN, Sno → Name, Cno → Title,  
  Sno, Cno, Term → Grade}


• Superkey of R? 
R, {SNCTE}, {SCE}, etc


• Candidate key of R? 
{SCE}, {ICE}


• Primary key of R? 
Either one of the candidate keys, but {SCE} would be better



Efficient Reasoning
// return the set of attributes, each attribute in the set is determined by X

Set ComputeXClosure(X, F) // X: a set of attributes, F: a set of FD

{

    XC = X; // XC: a set of attributes

    while (true) {

        if there exists (Y -> Z) in F such that  
            1) Y is subset of XC, and 
            2) Z is not a subset of XC 

        then XC = XC union Z; // X -> XC, XC -> Y, Y -> Z => X -> Z

        else break;

    } 

    return XC;

}



How to Use 
ComputeXClosure?

• Given R as a set of attributes, and F as a set of FDs, X, Y, K are all subset of R


• Is X → Y ∈ F+? ⇔ Is Y ⊆ ComputerXClosure(X,F) ?


• Is K a superkey of R? ⇔ Is R ⊆ ComputerXClosure(K, F) ?


• Is K a candidate key of R?


• Is K a superkey of R?


• For any attribute A in K, is K-{A} still a superkey of R?


• F ≡ G ⇔ F+ = G+ 
(Functional dependency set F is equivalent to set G if and only if F closure is 
identical as G closure.) 


