
Database
Management Systems

Database Design (II)

Good Database Design

• Rule of the thumb: Independent facts in separate tables  

• Each relation schema should consist of a primary key and
a set of mutually independent attributes. 

• Lazy rule: is it in normal form(s)?

Boyce-Codd Normal Form
(BCNF)

Let R be a relation schema and F a set of functional dependencies.

Schema R is in BCNF if and only if whenever (X → Y) ∈ F+  
and XY ⊆ R, then either

• (X → Y) is trivial (i.e., Y ⊆ X), or

• X is a superkey of R.

A database schema {R1, …, Rn} is in BCNF if each relation schema
Ri is in BCNF.

BCNF
• Formalized the goal that independent facts are stored in

separate tables.  

• What should be done if R is not in BCNF? —
Decomposition. 

• Identify undesirable dependencies (the ones that make R
not in BCNF), and decompose the schema R using these
dependencies.

Decomposition

• Definition: Let R be a relation schema. The collection
{R1, . . . , Rn} of relation schemas is a decomposition of R
if R = R1 ⋃ R2 ⋃ . . . ⋃ Rn.

• A good decomposition

• does not lose information (most important one)

• does not complicate checking of constraints

Lossless-Join
Decomposition

• Definition: Suppose R is the Relation Schema (with
instance r), and R (r) is decomposed into: R1, R2 (with
instance: r1, r2). If r = r1 ⋈ r2, then this decomposition is
called a Lossless-Join Decomposition.

• How to tell? 
R1 ∩ R2 → R1  
or  
R1 ∩ R2 → R2

Lossless-Join BCNF
Decomposition

Set ComputeBCNF(R, F)

{

 Result = { R };

 while some Ri in Result and X->Y in F+ violate the BCNF condition 
 // in other words, if X->Y in F+ makes Ri NOT in BCNF

 {

 Result = Result - {Ri};

 Add (Ri-(Y-X)) to Result;

 Add {XY} to Result;

 }

 return Result;

}

BCNF Decomposition

• There is always a lossless-join decomposition.

• Results depend on sequence of functional dependencies
used in the decomposition.

BCNF Example (I)

BCNF Example (II)

Dependency Preserving
Decomposition

• A functional dependency is inter-relational if it requires
joining two tables in order to test it.

• A decomposition D = {R1, …, Rn} of R is dependency
preserving if there is an equivalent set F’ of FDs, none of
which is inter-relational in D. (Note that the assumption here
is that none of the functional dependencies in the original set
F is inter-relational on original relation R.)

• It is possible that no dependency preserving BCNF
decomposition exists.

• Example: R = {ABC}, and F = {AB → C, C → B}.

Third Normal Form
Let R be a relation schema and F a set of functional dependencies.

Schema R is in 3NF if and only if whenever (X → Y) ∈ F+  
and XY ⊆ R, then one of the following conditions is true:

• (X → Y) is trivial (i.e., Y ⊆X), or

• X is a superkey of R, or

• each attribute of Y is contained in a candidate key of R.

A database schema {R1, …, Rn} is in 3NF if each relation schema Ri
is in 3NF.

3NF Decomposition

• 3NF is looser than BCNF (it allows more redundancy).

• For any relation, there always exists a lossless-join,
dependency-preserving decomposition into 3NF relation
schema.

Minimal Cover
• A set of functional dependencies G is minimal if

• every right-hand side of an FD in G is a single attribute.

• for no X → A in G is the set (G − {X → A}) equivalent to G.

• for no X → A in G and Z ⊂ X is the set 
(G − {X → A}) ∪ {Z → A} equivalent to G.

• For every set of FDs F, there is an equivalent minimal set of FDs
(called the minimal cover of F).

• G is the minimal cover of F if G is equivalent to F and G is minimal.

Finding Minimal Cover

• Replace X →YZ with the pair X → Y and X → Z.

• Remove X → A from F if  
A ∈ ComputeXClosure(X, F- {X → A}).

• Remove A from the left-hand-side of X → B in F 
if B ∈ ComputeXClosure(X − {A}, F).

Lossless-join and Dependency-
preserving 3NF Decomposition

// compute the minimal cover of F, each functional dependency forms a relation  
// in the decomposed set; If the candidate key is missing, add it to the decomposition

Set Compute3NF(R, F)

{

 Result = { }; // empty set of Result to start with

 G = a minimal cover for F;

 for each (X->Y) in G {

 Add {XY} to Result;

 }

 if none of Ri in Result contains a candidate key of R {

 compute a candidate key K of R;

 Add K to Result;

 }

 return Result;

}

