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Good Database Design

• Rule of the thumb: Independent facts in separate tables  

• Each relation schema should consist of a primary key and 
a set of mutually independent attributes. 

• Lazy rule: is it in normal form(s)?



Boyce-Codd Normal Form 
(BCNF)

Let R be a relation schema and F a set of functional dependencies. 


Schema R is in BCNF if and only if whenever (X → Y) ∈ F+  
and XY ⊆ R, then either 


• (X → Y) is trivial (i.e., Y ⊆ X), or 


• X is a superkey of R.


A database schema {R1, …, Rn} is in BCNF if each relation schema 
Ri is in BCNF. 




BCNF
• Formalized the goal that independent facts are stored in 

separate tables.  

• What should be done if R is not in BCNF? — 
Decomposition. 

• Identify undesirable dependencies (the ones that make R 
not in BCNF), and decompose the schema R using these 
dependencies.



Decomposition

• Definition: Let R be a relation schema. The collection 
{R1, . . . , Rn} of relation schemas is a decomposition of R 
if R = R1 ⋃ R2 ⋃ . . . ⋃ Rn.


• A good decomposition


• does not lose information (most important one)


• does not complicate checking of constraints



Lossless-Join 
Decomposition

• Definition: Suppose R is the Relation Schema (with 
instance r), and R (r) is decomposed into: R1, R2 (with 
instance: r1, r2). If r = r1 ⋈ r2, then this decomposition is 
called a Lossless-Join Decomposition.


• How to tell? 
R1 ∩ R2 → R1  
or  
R1 ∩ R2 → R2 



Lossless-Join BCNF 
Decomposition

Set ComputeBCNF(R, F)


{


    Result = { R };


    while some Ri in Result and X->Y in F+ violate the BCNF condition 
    // in other words, if X->Y in F+ makes Ri NOT in BCNF


    {


        Result = Result - {Ri};


        Add (Ri-(Y-X)) to Result; 


        Add {XY} to Result; 


    }


    return Result;


}



BCNF Decomposition

• There is always a lossless-join decomposition. 


• Results depend on sequence of functional dependencies 
used in the decomposition.



BCNF Example (I)



BCNF Example (II)



Dependency Preserving 
Decomposition

• A functional dependency is inter-relational if it requires 
joining two tables in order to test it. 


• A decomposition D = {R1, …, Rn} of R is dependency 
preserving if there is an equivalent set F’ of FDs, none of 
which is inter-relational in D. (Note that the assumption here 
is that none of the functional dependencies in the original set 
F is inter-relational on original relation R.)


• It is possible that no dependency preserving BCNF 
decomposition exists. 


• Example: R = {ABC}, and F = {AB → C, C → B}.



Third Normal Form
Let R be a relation schema and F a set of functional dependencies. 


Schema R is in 3NF if and only if whenever (X → Y) ∈ F+  
and XY ⊆ R, then one of the following conditions is true: 


• (X → Y) is trivial (i.e., Y ⊆X), or 


• X is a superkey of R, or 


• each attribute of Y is contained in a candidate key of R. 


A database schema {R1, …, Rn} is in 3NF if each relation schema Ri 
is in 3NF.



3NF Decomposition

• 3NF is looser than BCNF (it allows more redundancy).


• For any relation, there always exists a lossless-join, 
dependency-preserving decomposition into 3NF relation 
schema.



Minimal Cover
• A set of functional dependencies G is minimal if 


• every right-hand side of an FD in G is a single attribute.


• for no X → A in G is the set (G − {X → A}) equivalent to G.


• for no X → A in G and Z ⊂ X is the set 
(G − {X → A}) ∪ {Z → A} equivalent to G.


• For every set of FDs F, there is an equivalent minimal set of FDs 
(called the minimal cover of F).


• G is the minimal cover of F if G is equivalent to F and G is minimal.



Finding Minimal Cover

• Replace X →YZ with the pair X → Y and X → Z. 


• Remove X → A from F if  
A ∈ ComputeXClosure(X, F- {X → A}). 


• Remove A from the left-hand-side of X → B in F 
if B ∈ ComputeXClosure(X − {A}, F ).



Lossless-join and Dependency-
preserving 3NF Decomposition

// compute the minimal cover of F, each functional dependency forms a relation  
// in the decomposed set; If the candidate key is missing, add it to the decomposition

Set Compute3NF(R, F)

{

    Result = { };  // empty set of Result to start with

    G = a minimal cover for F;

    for each (X->Y) in G {

        Add {XY} to Result;

    }

    if none of Ri in Result contains a candidate key of R {

        compute a candidate key K of R;

        Add K to Result;

    } 

    return Result;

}


