
Transaction Management
Anomalies

1

Database
Management Systems

Transactions
• A transaction consists one or multiple queries and/or updates that can be translated to a

sequence of requests to read/write operations on physical objects in the database.

• Each transaction terminates in one of the two ways:

• commit (keep all the change(s) made by this transaction)

• abort/rollback (erase any change made earlier by this transaction, as if it never
happened in the first place)

• Goals:

• concurrent execution of transactions

• guarantee data integrity (consistent data only in the database)

2

Multi-user System
• Very few database systems assume to be single user systems

• In a multi-user system, multiple users/applications need and
should be allowed to use the system concurrently.

• How to execute concurrent processes

• serially

• interleaved concurrency

• parallel processing (with multiple CPU) and access data
concurrently

3

Assumptions
• Assume that each transaction is guaranteed to leave a database in a consistent state
after it completes.

• A transaction may not keep the database consistent while it is still in progress.

• Assume that all transactions access a single copy of data, i.e., there is only one
database.

• Assume that the database contains a fixed set of objects (for now)

• individual attributes

• records

• physical pages

• relations/tables

• files

4

ACID Properties
• Traditional database applications usually require

ACID properties in transaction management:

• Atomicity: all or nothing

• Consistency: only consistent data in database

• Isolation: as if only one transaction at a time

• Durability: committed transactions are forever

5

BASE Properties
• Newer applications and database models (such as

NoSQL) usually are developed for less rigid
situations, and sometimes favour more flexible
transaction management properties:

• Basic Availability.

• Soft State.

• Eventual Consistency.

6

Anomalies Due to
Interleaved Execution (I)

• Reading Dirty Data (WR Conflicts)

• Suppose X is a joint bank account.

• T1 wants to withdraw
$N from account X,
but decided to abort
the transaction in the end;

• T2 wants to deposit
a cheque of $M to account X.

T1 T2

read-item(X, v);
v’ = v - N;
write-item(X, v’);

read-item(X, v);
v’ = v + M;
write-item(X, v’);
commit;

abort;

7

• Unrepeatable Reads (RW Conflicts)

• T1 wants to transfer $N
from account X to account Y;

• T2 wants to find out your total
asset worth (for the purpose of
process your mortgage application).

T1 T2

sum = 0;

read-item(X, v);
v’ = v - N;
write-item(X, v’);

read-item(X, v);
sum = sum + v;
read-item(Y, v);
sum = sum + v;

read-item(Y, v);
v’ = v + N;
write-item(Y, v’);

8

Anomalies Due to
Interleaved Execution (II)

• Lost Updates (WW
Conflicts)

• X is a joint account.
• T1 wants to transfer $N

from account Y to account
X;

• Meanwhile, T2 wants to
deposit a cheque of $M
to account X

T1 T2
read-item(Y, v);
v’ = v - N;

read-item(X, v);
v’ = v + M;

write-item(Y, v’);
read-item(X, v);

write-item(X, v’);

v’ = v + N;
write-item(X, v’);

9

Anomalies Due to
Interleaved Execution (III)

