
Transaction Management
Schedules

1

Database
Management Systems

General Process

2

Scheduler
• takes read/write requests from transactions

• for each request, takes one of the following actions:

• execute

• delay

• ignore

• reject

• the output from the scheduler is called a schedule.

• Scheduler should not need to understand the transaction semantics. The conventional
assumption for the scheduler is:
Any database element that a transaction T writes is given a value that depends on the
database state in such a way that no arithmetic coincidences occur.

3

Schedule
• Notation

• Ri(x): transaction Ti reads object x

• Wi(x): transaction Ti writes object x

• Ci: transaction Ti commits

• Ai: transaction Ti aborts

• A transaction Ti is a sequence of operations

• A schedule S for a set of transactions T1,...,Tk includes every
operation Oi ∈ Ti and these operations are ordered the same way
as in Ti

4

Correctness
• When a database server processes several concurrent

transactions, it must appear as if the transactions have
been executed sequentially (in some/any order).

• If a database server really processes those transactions
sequentially, the generated schedule is called a serial
schedule. A serial schedule must be correct.

• If transaction Ti appears to precede Tj, then it means
that Tj will “see” all the updates done by Ti, and Ti will
not see any updates done by Tj.

5

Equivalent Schedules
• If two schedules are equivalent, they are equivalent on any database

instances. (Note: think about the database instances as test cases.)

• The same principle holds for queries. If a query is right, it will return the
right data on any database instances.

• Two operations are conflict if they

• belong to different transactions

• access the same database object

• at least one of them is a write operation

• Two schedules are conflict equivalent if every pair of conflicting operations
are ordered the same way in both schedules.

6

Conflict Serializability
• If a schedule is conflict equivalent to a serial schedule, then the schedule is a

conflict serializable schedule.

• A conflict serializable schedule is guaranteed to preserve computational
effects.

• We use serialization (precedence) graph to test whether a schedule is conflict
serializable.

• A serialization (Precedence) graph SG(S) for a schedule S is a directed
graph with nodes labeled by transactions, and an edge from Ti to Tj is in
SG(S) if and only if Oi[x] precedes Oj[x] in S where Oi[x] and Oj[x] are
conflicting operations.

• Theorem: A schedule S is conflict serializable if and only if SG(S) is an
acyclic graph.

7

Example (I)
R1(x)R2(y)R1(y)R2(z)R3(y)W3(z)W2(x)R1(z)

x: R1W2
y: R2R1R3
z: R2W3R1

T1 T2

T3

x

zz

Cyclic graph —> not conflict serializable
8

Example (II)
R1(x)R1(y)W1(x)R2(x)R3(y)R1(z)W3(y)W1(z)W2(x)

x: R1W1R2W2
y: R1R3W3
z: R1W1

T1 T2

T3

x

y

Acyclic graph —> conflict serializable
Conflict equivalent to both the serial schedules

T1T2T3 and T1T3T2

9

Other Properties of
Schedules

• Conflict serializable schedule says nothing about how
each transaction in the schedule would terminate itself.

• Recoverable Schedules (may need cascading rollback/
abort): A schedule is recoverable if each transaction
commits only after each transaction from which it has
read data has committed.

• Cascadeless Schedules: A schedule avoids cascading
rollback if transactions may read only values written by
committed transactions (no reading dirty value).

10

Example
• Recoverable Schedule (E means either Commit or Abort):

R1(x)R1(y)W1(x)R2(x)R3(y)R1(z)W3(y)W1(z)W2(x)E1E3E2

• the order of E2 and E3 doesn’t matter

• If T1 decides to abort, then T2 must abort itself too because T2 read the dirty
data (x) that should be there (written by T1).

• Cascadeless Schedule (again, E means either Commit or Abort):
R1(x)R1(y)W1(x)R3(y)R1(z)W3(y)W1(z)E1R2(x)W2(x)E3E2

• If T1 commits, then T2 would read the x value written by T1 (a committed
transaction).

• If T1 aborts, then T2 would read the original x value (before touched by T1).

• Either way, T2 can decide to commit or abort without ever consider how T1 ends
itself.

11

