Database
Management Systems

Transaction Management
Schedules

(General Process

N ¢
oPa‘fq Acw(/m?LS
“up
g’elechf 19&’0‘”& Set lom(anu ’«loa/omce —lop

~me AUCOWW‘:C wlm accNo = l2§)‘
where accNo =IZ§;

l &cb;ﬁ?? [aion
‘ read (X) >V vead (x) » v

write (x) & v'=leo

¢
Scheduler

L

v

Q;(Y) R\l(x) Wz(X)ClCZ

A Sc(\edv\/&

Runery
Cj)mﬁ \a”'/ N

Scheduler

« takes read/write requests from transactions
 for each request, takes one of the following actions:
* execute
e delay
e ignore
e reject
e the output from the scheduler is called a schedule.
« Scheduler should not need to understand the transaction semantics. The conventional

assumption for the scheduler is:

Any database element that a transaction T writes is given a value that depends on the
database state in such a way that no arithmetic coincidences occur.

Schedule

« Notation
e Ri(x): transaction Ti reads object x
o Wi(x): transaction T; writes object x
e Ci: transaction Ti commits
e Ai: transaction T; aborts
e A transaction Tiis a sequence of operations

A schedule S for a set of transactions T+,..., Tk includes every
operation O; € Ti and these operations are ordered the same way

as in T

Correctness

* When a database server processes several concurrent
transactions, it must appear as if the transactions have
been executed sequentially (in some/any order).

* |f a database server really processes those transactions
sequentially, the generated schedule is called a serial
schedule. A serial schedule must be correct.

* |f transaction Ti appears to precede Tj, then it means
that T; will “see” all the updates done by T;, and T; will
not see any updates done by ;.

Equivalent Schedules

 |f two schedules are equivalent, they are equivalent on any database
instances. (Note: think about the database instances as test cases.)

 The same principle holds for queries. It a query is right, it will return the
right data on any database instances.

* Two operations are conflict if they
* belong to different transactions
e access the same database object
e at least one of them is a write operation

e Two schedules are conflict equivalent if every pair of conflicting operations
are ordered the same way in both schedules.

Conflict Serializability

* |f a schedule is conflict equivalent to a serial schedule, then the schedule is a
conflict serializable schedule.

« A contlict serializable schedule is guaranteed to preserve computational
effects.

* We use serialization (precedence) graph to test whether a schedule is conflict
serializable.

* A serialization (Precedence) graph SG(S) for a schedule S is a directed
graph with nodes labeled by transactions, and an edge from Tito T;is in
SG(S) if and only if Oi[x] precedes Oj[x] in S where Oi[x] and Oj[x] are
conflicting operations.

 Theorem: A schedule S is conflict serializable if and only if SG(S) is an
acyclic graph.

Example ()
R1(X)Ra(y)R1(y)Ra(z)Rs(y)Ws(z)Wa(x)R1(z)

X. :%1W2
' RoR1R3
: 22W3R1

<<

N

X

T+ o To
\ A/Z
/
T3

Cyclic graph —> not conflict serializable

8

Example (1)

R1(x)R1(y)W1(x)Ra(x)Rs(y)R1(z)Wa(y)W1(z)Wa(x)

XZ?ﬂNHRﬂNé
- R1R3WS3 T . ST

: R4 W+ ??\\

T3

<<

N

Acyclic graph —> conlflict serializable
Contlict equivalent to both the serial schedules
[1ToT3and T1131>

Other Properties of
Schedules

* Contlict serializable schedule says nothing about how
each transaction in the schedule would terminate itself.

* Recoverable Schedules (may need cascading rollback/
abort): A schedule is recoverable it each transaction
commits only after each transaction from which it has
read data has committed.

» Cascadeless Schedules: A schedule avoids cascading

rollback If transactions may read only values written by
committed transactions (no reading dirty value).

10

Example

 Recoverable Schedule (E means either Commit or Abort):
R1(x)R1(y)W1(x)Ra(X)Ra(y)R1(z2)Ws(y)W1(z)Wa(X)E1EsE2

e the order of E2 and Es doesn’t matter

e |f T1 decides to abort, then T2 must abort itself too because T2 read the dirty
data (x) that should be there (written by T1).

« Cascadeless Schedule (again, E means either Commit or Abort):
R1(x)R1(y)W1(x)Ra(y)R1(z2)Wa(y)W1(z)E1R2(x)Wa(x)EsE2

e |[f T1 commits, then T2 would read the x value written by T1 (a committed
transaction).

e |f T1 aborts, then T2 would read the original x value (before touched by T1).

e Either way, T2 can decide to commit or abort without ever consider how T1 ends
itself.

11

