
Recovery

Database
Management Systems

Recovery
• Two goals:

• allow transactions to be either committed (with a
guarantee that the effects are permanent) or aborted
(with a guarantee that the effects disappear)

• allow the database to be recovered to a consistent state
in case of some kind of failure

• input a schedule of operations produced by scheduler
(including commit and abort requests)

• output: a schedule of reads, writes and forced writes

Failures
• System Failure

• database server halted abruptly

• processing of transaction(s) halted abruptly

• connections to clients broken

• contents of memory buffers lost, however, database files are not damaged.

• Media failure

• one or more database files become damaged or inaccessible

• a media failure may cause a system failure, or possibly an orderly system system
shutdown.

• solution: Duplication! (by archiving (backup) or redundant (maybe distributed)
copies)

Atomicity and Durability
• Overall, a failure can not cause a transaction to be

partially executed.

• After a failure occurs, active transactions should be
aborted automatically

• Committed transactions should be durable, i.e.,
changes they made to the database should not be
lost as a result of the failure.

Unrealistically simple way
• keep all changes in memory and write them all back to disk when a transaction commits

• guaranteed atomicity

• Problems:

• too many writes when a transaction commits, what if system failure happened in the middle
of those writes?

• what if we run out of memory buffers?

• keep no changes in memory and write each change to disk right away

• guaranteed durability

• Problems:

• very poor response time

• what if the transaction aborts

• what if the system crashed in the middle of executing a transaction

Log based approaches
• a log is a read/append only data structure (file).

• when transactions are running, log records are appended to the
log.

• Log records contain several types of information:

• UNDO information: old values of objects that have been
modified by a transaction.

• REDO information: new values of objects that have been
modified by a transaction.

• BEGIN/COMMIT/ABORT: records are recorded whenever a
transaction begins, commits or aborts.

Write-Ahead Logging (WAL)
• WAL protocol makes sure that LOG is consistent with the main

database

• WAL protocol requires:

• UNDO rule: a log record for an update is written to disk
before the corresponding data page is written to disk.

• REDO rule: all log records for a transaction are written to disk
before the transaction is considered to be committed.

• UNDO guarantees Atomicity

• REDO guarantees Durability

Using WAL in operations
• Read(Ti, x);

• read value v of x (if x is not in cache, load it in) and return it to the upper manager

• Write(Ti, x);

• add Ti to the set of active transactions

• read the old value v of x (load x to cache if it is not in)

• LOG [Ti, x, v, v’]

• write v’ to x (x is still in the cache) and then ACK write

• Commit(Ti);

• LOG [Ti, commit]

• flush all log records and then Acknowledge commit

• LOG [Ti, end]

• Abort(Ti);

• scan LOG backwards for data items updated by Ti, restore the old value of x (only restores in cache)

• LOG [Ti, abort]

• Acknowledge abort

• LOG [Ti, end]

Recovery Algorithm (ARIES)
• ARIES (Algorithms for Recovery and Isolation Exploiting Semantics) Algorithm Assumptions

• WAL used

• cascadeless schedules

• only single copy of any data item in the cache

• When system accidentally crashes and we need to restart the system:

• Let R = emptySet

• scan LOG to find all active and committed transactions

• scan LOG backwards for records [Ti, x, v, v’] and for each such record such that x not in R:

• read x; if Ti was committed then write v’ into x and put x to R; if Ti was active then write v into x;

• when done, write abort and end records for all active transactions

• restart completed

• Restart operation is idempotent (if system crashes during restart, we don’t mind)

Checkpoint
• Logs can grow very big over time — place a checkpoint to

mark a new start

• A simple checkpoint algorithm

• prevent new transactions from starting, wait for active
ones to finish

• copy modified memory blocks to database files

• append a checkpoint record to the log

• allow new transactions to begin

