
Database
Management Systems

Database Storage

I/O model of computation
• what’s wrong with memory? It is volatile.

• Typical storage hierarchy:

• Main memory for currently used data

• Disk for the main database

• Tapes for archiving older version of the data

• DBMS assumes the Dominance of I/O cost: The time taken to perform a disk
access is much larger than the time likely to be used manipulating that data
in main memory. Thus, the number of block accesses (Disk I/O’s) is a good
approximation to the time needed by the algorithm and should be minimized.

• In analysis, we also assume the worst case scenario: 100 percent miss rate.

Buffer Management in
DBMS

• Similar to paging/buffer management in OS

• Why not let OS manage the buffer?

• portability issues,

• extra requirements from DBMS, e.g., to maintain the write
ahead log, we may need to force write some pages and be
aware which transaction is accessing which page.

• we may want to adjust the replacement policy and pre-fetch
pages based on access patterns in typical DB operations.  

Data on Disk
• Record (tuple) format:

• Fixed Length

• Variable Length

• sentinel end-of-record character

• length/pointer at the beginning of the record

• Page (4k bytes) format

• as an array of records

• as an array of pointers

• Table/Relation — Files of Data Pages

Example
Students (

 sno char(9),

 lastName varchar(30),

 firstName varchar(40),

 SIN char(9),

 email varchar(40),

 phone char(10),

 address varchar(80),

 DOB Date

);

Example

How to access data?

• Table scan

• Using index

• Example: 
10,000 students 
each student record occupies about 250 bytes 
each data page is 4k bytes 
each data page can store about 16 records 
640 data pages to store the 10,000 student records

Why do we need indices?

• For a SQL query: 
select *  
from Students 
where sno = ’123456789’;

• table scan I/O cost: N blocks (640 pages)

• binary search I/O cost: log2N = log2640, about 9 to 10 
(however, need about 640 nodes to construct the binary
search tree)

Index Types

• B+/B tree: widely used, fully dynamic, and support range
queries

• Hash Tables

• R-Trees, KD Trees

• ISAM (old, static)

• etc

