Database
Management Systems

Security, Views, and Other Topics



SEecurity

Based on the existence of authorization ID's (user names).

Privileges can be granted to or revoked from authorization IDs
on database elements (objects).

Common database elements include relations/tables, views,
sequences, stored procedures, etc.

Two aspects about the privileges

* how they are created initially: Whoever created the database
element has all possible privileges on this element.

* how they are passed from user to user: Granting



Privileges

select

iInsert

delete

update

references

usage: the right to use that element in one's own declarations
trigger: the right to define triggers on that relation

execute: the right to execute a piece of code

under: the right to create subtypes of a given type



Granting Privileges

SQL Grant statement can let a user "copy" a privilege to another user

SQL Statement Syntax:
GRANT <privilege list> ON <db element>
TO <user list> [WITH GRANT OPTION];

privilege list: an option is ALL PRIVILEGES, that means all the privileges that
the grantor may legally grant on the db element in question.

db element: usually a relation (base table or view). If it is another kind of
element, the name of the element is preceded by the type of that element.

The special user PUBLIC means all users.
SQL Statement Example:

Grant select, update On HR.Employees To usera, userb With Grant Option;
Grant delete On HR.Employees To userb;



Revoking Privileges

a granted privilege can be revoked at any time.

SQL statement:
REVOKE <privilege list> ON <db element>
FROM <user list> CASCADE|RESTRICT;

REVOKE GRANT OPTION FOR <privilege list> ON <db element>
FROM <user list> CASCADE|RESTRICT;

Example:
Revoke Grant Option For select On HR.Employees From usera Cascade;
Revoke update On HR.Employees From usera Restrict;

In the second statement: The core privileges themselves remain, but the option to grant them to
others is removed.

CASCADE: revoke any privileges that were granted only because of the revoked privileges.

RESTRICT: if the privilege has passed on by the user, the revoke with RESTRICT option would
fail. You'll be forced to use CASCADE option.



Base table: created by create table statement, physically exists, persistent, won't change
because other relation's change

Virtual Views: relations defined by a query over other relations
virtual views are not stored, but can be queried as if they existed.
Views can also be materialized.

Declaring view:
CREATE VIEW view_name (attribute list) AS (view-definition-SQL);
Create View Dept_Budget (dname, totalSalary)
AS (select dname, sum(salary) as totalSalary
from Departments join Emps on did = workdept
group by dname);

Querying view: the same as a base table. During the query processing time, the view
would be replaced by its definition in order to execute the query.
select dname from dept_budget where totalSalary > 100000:;

removing view:
DROP VIEW view_name;



Seqguence

Syntax of creating a sequence:

CREATE SEQUENCE <seqguence_name>
Start With <integer>
Increment By <integer>
Order | NoOrder
Cycle | NoCycle
Maxvalue <integer> | NoMaxvalue
Minvalue <integer> | NoMinvalue;

Example:

Create Sequence AutoProjectNo
Start With 1000
Increment by 1
Order
NoCycle
No Maxvalue
MinValue 1000;

Create Sequence ConfirmationNo
Start With 1000
Increment by 4
NoQOrder
Cycle
Maxvalue 9999
MinValue 10000;



Trigger

CREATE OR REPLACE TRIGGER "projectNumber®
before insert on Projects
for each row
when (NEW.projectNo is null)
begin
select AutoProjectNo.nextval into :NEW.projectNo from dual;
end:;

/

firing Point: Before/After

Options: insert/delete/update

on <table-name>

For each Row or For each statement

when (bool condition)

Begin body End;
body can include multiple sqgl statements.



