VANCOUVER ISLAND UNIVERSITY
CSCI 370 — FINAL EXAMINATION
17 April 2009, 13:00 — 16:00

TO BE ANSWERED IN BOOKLETS DURATION: 3 Hours

INSTRUCTOR: H. Liu

Instructions

e Students must count the number of pages in this examination paper before
beginning to write, and report any discrepancy immediately to the invigilator.

e This examination paper consists of eight pages.

e This is a CLOSED BOOK — NO NOTES examination.

e Calculators are NOT permitted.

e Remember to state any assumptions and show rough work.

e Note carefully the weight of each question, and answer appropriately.

o Attempt all questions. All questions relate to material covered in the lectures,
labs and assignments.

(This page is left empty intentionaly.)

Note: Question 1, 2, 3, and 4 refer to the following relational schema, which
describes a hypothetical database used by a university to manage the mainte-
nance projects. In the schema, the primary key of each relation is underlined.

Buildings(bno, buildingName, constructionDate)

Companies(cid, companyName, contactInfo, specialty)

Projects(pno, bno, description, budget, dateProposed)

Contracts@, pno, cid, description, expense, startDate, completeDate)

e Each record in the relation Buildings describes a building. Each building
is identified by a unique building number (bno), and has a name (build-
ingName), which is also unique, and a date indicating when the building
was first constructed (constructionDate).

e Each record in the relation Companies describes a company. Each com-
pany has a unique id (cid), a name (companyName), its contact infor-
mation (contactInfo) and a description about the company’s specialties
(specialty).

e Each record in the relation Projects describes a maintenance project.
Each project is identified by a unique number (pno). Each project record
also describes the details of this maintenance project (description), on
which building (identified by bno) the project was or will be done, the
budget for this project (budget), and the date the project was proposed
(dateProposed). You can safely assume that each project has been either
completed or just proposed (i.e., no contract has been recorded for it).

e One maintenance project could be done through several contracts. Each
record in the relation Contracts records a contract between the univer-
sity and a company (identified by cid). The contract record also shows a
description of the details of the contract (description), the expense (ex-
pense) and the start and finish date of the contract (startDate and com-
pleteDate). Each contract is given a unique number (cno) and is linked
to a maintenance project identified by pno.

You might find the following partial class declaration useful in the exam:

class Environment {
public:

static Environment * createEnvironment();

static void terminateEnvironment (Environment *env) ;

Connection * createConnection(const string &userName,
const string &password,
const string &connectString = "");

void terminateConnection(Connection *connection);

}
class Connection
{
public
Statement* createStatement(const string &sql = "");
void terminateStatement(Statement *statement) ;
void commit();
void rollback();
}
class Statement
{
public:
ResultSet * executeQuery(const string &sql = "");
unsigned int executeUpdate(const string &sql = "");
void closeResultSet(ResultSet *resultSet);
¥
class ResultSet
{
public:
bool next();
int getInt(unsigned int collIndex);
string getString(unsigned int colIndex);
}

1. (5 marks) In the relation Building, instead of constructionDate, we can
also use buildingAge to store the same information. Which choice is better?
Why?

Solution:

It is better to use constructionDate than buildingAge,
because buildingAge changes every year while constructionDate
stays the same. If the buildingAge is used, then the data
stored in the database would need to be updated every year.

2. (25 marks) Express each of the following queries in a single SQL statement.

(a) For each maintenance project done or proposed to be done on each
building, list the building’s name, the project’s description and the
project’s budget. Order the result according to the building’s name
ascending first, then the budget descending.

Solution:

select buildingName, description, budget

from Projects P join Buildings B on P.bno = B.bno
order by buildingName, budget desc;

(b) List the name of each building that has the word 'Science’ in its name
and that has never had any maintenance project done on or proposed
for it.

Solution:
select buildingName
from Buildings
where buildingName like ’JScience}’
and bno not in (select bno
from Projects);

(c) List the name of each building which is constructed in or after year
2000 and has already had at least one maintenance project done on it
or proposed for it. Duplicates should be eliminated from the result.

Solution:
select buildingName
from Buildings
where to_char(constructionDate, ’yyyy’) > ’2000°
and bno in (select bno
from Projects);
Or
select distinct buildingName
from Buildings B join Projects P on B.bno = P.bno
where to_char(constructionDate, ’yyyy’) > ’2000’;

(d) For each building, list the building’s name and the number of mainte-
nance projects done or proposed on it, and name the second column
as totalProjectNumber. If the building does not have any project,
list the number as 0.

Solution:

select buildingName, count(pno) as totalProjectNumber
from Buildings B left join Projects P on B.bno = P.bno
group by B.buildingName;

(e) For each project that is over budget, list the building’s name, the
project’s description and budget, and the total amount of money
spent on this project (which should be the sum of the expenses of all
the contracts linked to this project).

Solution:

select buildingName, P.description, budget, sum(expense) as totalExpenses
from Project P, Buildings B, Contracts C

where P.bno = B.bno and P.pno = C.pno

group by P.pno, B.buildingName, P.description, P.budget

having sum(expense) > budget;

3. (10 marks) Express the following query in relational algebra and Datalog
respectively:

For each building that is newer than the building named
'Library’ (compared by their constructionDate), list the name
of the building, and the description, budget, and the date the
project was proposed of all the maintenance projects done or
proposed on the building.

Solution:
Note: P means project operator, S means select operator and
J means join operator
Relational Algebra query:
P_{buildingName, description, budget, dataProposed)
(Projects J_(bno) (Buildings J_(constructionDate > conDate)
(P_{constructionDate as conDate} S_(buildingName = ’Library’) Buildings)))

Datalog query:
Result(buildingName, description, budget, dateProposed) :-
exists bnol, conDatel, conDate2,
Buildings(bnol, buildingName, conDatel) and Buildings(_, ’Library’, conDate2)
and Projects(_, bnol, description, budget, dataProposed)
and conDatel > conDate?2);

4. (10 marks) The university just got some funding to upgrade campus build-
ings. And the university decided to start as many projects as possible

from the earliest proposed but not done project. Your task is to develop
a C/C++ function, called 1istProjects to find the projects that can be
funded by the given funding.

This function takes a database connection (conn), a double number indi-
cating the amount of money received (amount), and a string that contains
a date in the format of yyyy-mm-dd’, (date) as its parameters. Then
from the database, the function should find all the projects proposed af-
ter date (presumably those are the projects waiting to be started), order
them according to the dates the projects are proposed, and as long as the
remaining funding can still cover the whole budget of the project, show
the project’s description, the building’s name and the budget. Finally, the
function should show the remaining funding when the remaining funding
is not enough to cover the next project’s budget.

The prototype of the function is shown below:

void listProjects(Connection *conn, double amount, string date);

Solution:

void listProjects(Connection *conn, double amount, string date)

{

string queryString = "select description, buildingName, budget ";
queryString = queryString + "from Projects P, Buildings B "
+ "where P.dateProposed > to_date(’" + date + "’, ’yyyy-mm-dd’)

+ " and P.bno = B.bno "
+ "order by P.dateProposed";

Statement * stmt = conn->createStatement();
ResutSet * rs = stmt->executeQuery(queryString) ;

string description, buildingName;
double budget;

cout << "The following project may be accomplished with the funding:
cout << "Project Description \t Building Name \t Budget \n";
CoUt << Mo m \n";

while (rs—>next()) {
description = rs->getString(1);
buildingName = rs->getString(2);
budget = rs->getDouble(3);

if (amount > budget) {
cout << description << "\t"
<< buildingName << "\t"
<< budget << "\n";
amount = amount - budget;
} else {
break;

\n";

}

cout << Mmoo \n";
cout << "The remaining funding is " << amount << ".\n";

stmt->closeResultSet (rs);
conn->terminateStatement (stmt) ;
return;

5. (10 marks) Consider a relation with schema R(A, B,C, D, E) and a set of
FD’s, F = {A — D,BE — C,E — A}.

(a) What are all the candidate keys of R?

Solution:
There is only one candidate key of R, which is BE.

(b) R is not in BCNF. Why?

Solution:
Because A -> D is not trivial and A is not a super key of R.

(c) find a lossless join decomposition to decompose R into collections of
relations that are in BCNF.

Solution:
ABCDE (using A->D)
/ 0\
AD ABCE (using E->A)
/\
EA BCE

6. (10 marks) For each of the following two schedules:

i. 73(B);r3(A);ws(A);r1(C);r1(B);ra(A); wa(A); wi (C);wr(B);ws(C);

ii. ro(D);ra(A);wa(D);re(B);r1(C);r3(C);ra(D); we(D);wa(B);r3(B); ws(C); ri(A); wy (A);

Answer the following questions:

(a) what is the precedence (serialization) graph for the schedule?

Solution:

i.

ii.

T3 before T2, T3 before T1 and Tl before T3
T2 before T1, T2 before T4, Tl before T3 and T4 before T3

(b) Is the schedule conflict-serializable? If so, list all the equivalent serial
schedules.

Solution:

i. The schedule is not conflict-serializable since there is a cycle
in its precedence graph.

ii. The schedule is conflict-serializable since its precedence
graph is acyclic. The equivalent serialschedules are
T2 T4 T1 T3 and T2 T1 T4 T3.

7. (10 marks)

(a) Strict two phase locking (strict 2PL) requires each transaction to
hold all locks to the end of the transaction. Schedules generated by
scheduler using strict 2PL are guaranteed to be cascadeless.

If we modify the strict 2PL slightly, so that each transaction is al-
lowed to release shared locks early, but still required to acquire all
locks before any lock is released and to hold the exclusive locks to
the end. Are the schedules generated using this modified strict 2PL
still cascadeless? If not, are they recoverable, or conflict serializable?

Solution:

The schedules should still be cascadeless since no transaction would
be allowed to access the dirty data of another transaction (because
this other transaction would hold its exclusive locks to the end).

(b) If we modify the strict 2PL further and allow each transaction to
acquire and release shared locks at any time as long as the transaction
acquire and then hold all exclusive locks to the end, what kind of
anomaly may happen in the schedules generated using such locking
rules? Give an example of the anomaly.

Solution:
This locking protocol could cause unrepeatable read anomoly.
Example (E means exclusive(write) lock and S means shared(read) lock):
T1 T2
acquire E(x)
acquire S(y)
acquire E(z)
read(y)
read(x)
X = x+y;
write(x);
release S(y)
acquire E(y)
read(y)
y=yox2
write(y)
commit and release E(y)
acquire S(y)

read y

read z

z = z-y;

write(z)

commit and release
E(x), S(y), E(z)

8. (10 marks) Show the grant diagrams after the sequence of actions listed
in the following table. Assume A is the owner of the relation T to which
privilege p refers.

Action

Grant p To B On T With Grant Option
Grant p To C On T With Grant Option
Grant p ToD On T

Grant p ToBOn T

Grant p To D On T With Grant Option

QAP m @ =T

If A wanted nobody but B to have the privilege p on the relation T, what
action(s) should A take?

Solution:
Grant diagram (* means grant option):
A (T, p*)
/ \
B (T, p*x) B (T, P)
/ \

C (T, p, *) D (T, P)
|
D (T, p, *)

A can run the following SQL statement:
revoke grant option for p on T from B cascade;

9. (10 marks) The data pages of an instance of a hypothetical relation T with

three attributes A, B and C are shown in the next page. Assume that a
B+ tree internal node can store at most 4 values and 5 pointers and its
leaf node can store at most 4 data items and 2 pointers (to doubly link
the leaf nodes together). Also assume that there is already a clustered
(sparse) B+ tree index built on the relation T using attribute C as the
search key.
You are asked to build another B+ tree index on T using attribute A as
the search key. Can you build this index as a clustered (sparse) index or
a non-clustered (dense) index? Draw this B+ tree index. (You may use
the next page to draw the index.)

10

2 |34

OT‘C/JH >

18 | 32
26 | 30

16 | 28

O

4 126

24 | 24

13

15

17

19

21

23

25

27

29

31

33

11

