Artificial Intelligence

Problem Solving Agents

Outline

Problem-solving agents
Problem representation
Problem formulation — state space

Strategies for state space search

Problem Solving

* |n order to cope, there are generally two ways:

* Armor yourself and hope for the best (like a tree or a clam);

e develop methods for getting out of harm's way and into
the good's way.

e |f taking the second method, then an agent must continually
solve: Now what do | do? And usually a simple reflex agent

won't be able to cope.

 We need a problem solving agent, which is a kind of goal-
based agent. The goal is to solve a problem.

3

Another Definition of Al

 The study of representation and search through which
intelligent activity can be enacted on a mechanical device.

 The function of a representation system: to capture the
essential features of a problem domain and make that
information accessible to a problem-solving agent.

e Abstraction
 EXpressiveness

e Efficiency

Representation lypes

Graph based
Logic based
Rule based
Model based
Case based

Hybrid systems

Problem Solving Agent

* A problem solving agent usually is equipped with an internal
representation system, and uses search strategies to solve a problem.

* For search algorithms the agent choose to use, we need to ask:
e (completeness) Is the agent guaranteed to find a solution?

e (termination) Will it always terminate, or can it be caught in an
infinite loop?

e (Optimality) Is its solution guaranteed to be optimal?

e (Complexity) What is the cost (time and space complexity) of
finding a solution?

Problem Solving Agent
Types

e Offline ones --- find a solution and execute the solution
with “eyes closed”.

* Online ones ---find the solution along with the execution.
This becomes an exploration problem.

Problem types

Deterministic, fully observable —> single-state problem

* Agent knows exactly which state it will be in; solution is a sequence
Non-observable —> sensorless problem (conformant problem)

e Agent may have no idea where it is; solution is a sequence
Nondeterministic and/or partially observable —> contingency problem
e percepts provide new information about current state

e often interleave search, execution

Unknown state space —> exploration problem

Single State Problem’s Representation

system — State Space

A problem is defined by four items:

initial state — where the agent starts in

actions or successor function

S(x) = set of <action, successor-state> pairs

— where each action is one of the legal actions in state x and each
successor state is a state that can be reached from x by applying the action

goal test
e Explicit (whether a given state is a goal state), e.g., X = Success
e Implicit (whether a given goal is reached), e.g., Checkmate(x)

path cost (additive) — the reflection of the performance measure

Example

M} Oradea
Neamt
T 87
™ lasi
Q2
Sibiv oy Fagamas
o n MVaslui
Timisoara HlmmcuVﬂoea
142
: : 211 =
Lugoj Pitesti
70 - 08 .
as I Hirsova
#Mehadia 101 . Urziceni
. ') 5
. L 10 138 Bucharest
D eta -
obr 6. L/ %
Craiova Eforie
M Giurgiu

10

General Problem-solving
agents

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
static: seg, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state «+— UPDATE-STATE(state, percept)

if seqis empty then do
goal +— FORMULATE-GOAL(state)
problem < FORMULATE-PROBLEM(state, goal)
seq < SEARCH(problem)

action + FIRST(seq)

seq +— REST(seq)

return action

11

Selecting a state space

e Depends on
* The specific problem, and
* The internal representation of the agent

* Real world is absurdly complex — Problem formulation usually requires abstracting
away real-world details to define a state space that can feasibly be explored.

e (Abstract) state = set of real states
e (Abstract) action = complex combination of real actions
e (Abstract) solution = set of real paths that are solutions in the real world

 Each abstract action should be "easier" than the original problem

12

State Space Graph

e State space is a graph based representation system.

e The initial state and the successor function together implicitly define the state space of
the problem. It forms a graph.

e Nodes — states
e Arcs — actions (directed or undirected?)
e Path — a sequence of states connected by a sequence of actions.
e A solution is a sequence of actions leading from the initial state to a goal state.

e Solving problem becomes systematically searching through state-space graph to find a
path from initial state to goal state.

e Graph theory can be used to analyze the structure and complexity of both the problem
and the search procedures used to solve it.

13

Strategies for State Space
Search

e Two directions:

 Data-Driven — From the given data (initial state) of a
problem instance toward a goal

 Goal-Driven — From a goal back to the data
e Jypes:

 Uninformed search — search strategies use only the
information available in the problem definition

e Informed search — use heuristics

14

General Tree Search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe ¢ INSERT(MAKE-NODE(INITIAL-STATE|problem]), fringe)
loop do
if fringe 1s empty then return failure
node « REMOVE-FRONT(fringe)
if GoAL-TEs1{problem](STATE[node]) then return SoLuTioN(rode)
fringe + INSERT ALL(EXPAND(node, problem), fringe)

function Expanp(node, problem) returns a set of nodes

SuCcessors «+— the empty set
for each action, result in SUCCESSOR-FN|problem|(STATE[node]) do

5 ¢~ a new NODE
PARENT-NODE[s] ¢ node; ACTION[s] ¢ action, STATE[s] + result
PATH-COST[s] « PATH-COST[node] + STEP-COST(naode, action, s)
DeprTH|s] ¢ DEPTH|ROE] + 1
add s to successors

return successors

15

Search strategies

e A search strategy is defined by picking the order of node expansion
e Strategies are evaluated along the following dimensions:

e completeness: does it always find a solution if one exists?

e time complexity: number of nodes generated

e space complexity: maximum number of nodes in memory

e optimality: does it always find a least-cost solution?
 Time and space complexity are measured in terms of

e b: maximum branching factor of the search tree

e d: depth of the least-cost solution

e m: maximum depth of the state space (may be o)

16

Uninformed Search

e Search strategies use only the information available in the
problem definition

* Breadth-first search
* Uniform-cost search
 Depth-first search

 Depth-limited search

e |terative deepening search

17

Summary of Uninformed
Search Algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time O@®*hy opc/dy owmm) oW O(b%)
Space Oty omC /Yy O(m) O(bl) O(bd)

Optimal? Yes Yes No No Yes

18

Informed Search Strategies

e |dea: use an evaluation function f(n) (usually involves heuristics) to estimate
the “desirability” of candidate states.

e Implementation:

e QOrder the candidate states in decreasing order of desirability
e Special cases:

e greedy best-first search

e A* search

e Heuristic refers to experience-based techniques for problem solving,
learning, and discovery that gives a solution which is not guaranteed to be
optimal.

19

Greedy best-first search

e Evaluation function f(n) = h(n) (heuristic)
= estimate of cost from n to goal

 Greedy best-first search picks the state that appears to
be closest to goal

20

Properties of greedy best-
first search

Complete?

e No - can get stuck in loops, e.g., lasi —> Neamt —> lasi —> Neamt —>

Time?

e O(bM), but a good heuristic can give dramatic improvement
Space?

e O(bm) -- keeps all nodes in memory

Optimal?

e No

21

A”* search

|dea: avoid expanding paths that are already expensive
Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n

h(n) = estimated cost from n to goal

f(n) = estimated total cost of path through n to goal

22

Where do the heuristics come

from? ---Relaxed problems

A problem with fewer restrictions on the actions is called a
relaxed problem

The cost of an optimal solution to a relaxed problem is a heuristic
for the original problem

A heuristic h(n) is admissible if for every node n, h(n) < h*(n),
where h*(n) is the true cost to reach the goal state from n.

An admissible heuristic never over-estimates the cost to reach
the goal, i.e., it is optimistic

Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal

23

Properties of A* Search

e Complete?

e Yes (unless there are infinitely many nodes with f < f(G))
e Time?

e Exponential

e Space?

e Keeps all nodes in memory

e Optimal?

e Yes (if heuristics is admissible)

24

Local search algorithms

 Many optimization problems, the path to the goal is irrelevant; the goal state itself is the
solution, e.g., n-queens problem

e State space = set of "complete" configurations
e Find configuration satisfying constraints
* In such cases, we can use local search algorithms
* keep a single "current" state, try to improve it
e Algorithms:
e Hill-climbing search -- "Like climbing Everest in thick fog with amnesia"

e Simulated annealing search -- escape local maxima by allowing some "bad" moves but
gradually decrease their frequency

e Genetic algorithms

25

Genetic algorithms

A successor state Iis generated by combining two parent
states

Start with k randomly generated states (population)

A state is represented as a string over a finite alphabet (often
a string of Os and 1s)

Use evaluation function (fitness function) -- higher values for
better states.

Produce the next generation of states by selection,
crossover, and mutation

20

