Artificial Intelligence

Constraint Satisfaction Problems

Outline

e Constraint Satisfaction Problems (CSP)
e Backtracking search for CSPs

e | ocal search for CSPs

Constraint Satisfaction
Problems (CSP)

e CSP vs Standard Search Problem
e Standard search problem:

e state is a "black box" — any data structure that supports successor
function, heuristic function, and goal test

e CSP:
o state is defined by variables X; with values from domain D;

e goal test is a set of constraints specifying allowable combinations of
values for subsets of variables

* Allows useful general-purpose algorithms with more power than standard
search algorithms

* More abstract representation format/language

* Allows use of general-purpose algorithms with more power than standard
search algorithms

Constraint Satisfaction
Problem Definition

CSP is formally defined by a set of variables, X1, Xo, ..., Xn, and a set of
constraints, Cq, Co, ..., Cn.

Each variable Xi has a non-empty domain D; of possible values.

Each constraint Ci involves some subset of the variables and specifies
the allowable combinations of values for that subset.

A state of the problem is defined by an assignment of values to some or
all of the variables: {Xi = vi, Xj=vj, ...}.

An assignment that does not violate any constraints is called a
consistent or legal assignment.

A complete assignment is one in which every variable is mentioned.
A solution to a CSP is a complete and consistent assignment.

Some CSPs also require a solution that maximizes an objective function.

Real-world CSPs

Assignment problems

* e.g., who teaches what class

Timetabling problems

* e.g., which class is offered when and where?
Transportation scheduling

Factory scheduling

Notice that many real-world problems involve real-valued variables

Varieties of CSP

e Discrete variables
¢ finite domains:

* n variables, domain size d —> O(d") complete assignments
e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)

¢ infinite domains:

* Integers, strings, etc.
e.g., job scheduling, variables are start/end days for each job

* need a constraint language, e.g., StartJob1 + 5 < StartJob3
e Continuous variables
e e.g., start/end times for Hubble Space Telescope observations

* linear constraints solvable in polynomial time by linear programming

Constraint Graph

e Varieties of constraints

 Unary constraints involve a single variable

e Binary constraints involve pairs of variables

* Higher-order constraints involve 3 or more variables
 Binary CSP: each constraint relates at most two variables

e Constraint graph: nodes are variables, arcs are
constraints

Standard search
formulation (incremental)

* |dea: Let's start with the straightforward approach, then fix it
e States are defined by the values assigned so far

* Initial state: the empty assignment {}

e Successor function: assign a value to an unassigned
variable that does not conflict with current assignment

e fail if no legal assignments

 (Goal test: the current assignment is complete

38

Properties of CSP

Problem definition is the same for all CSPs.

Every solution appears at depth n with n variables
—> use depth-first search.

Path is irrelevant.
Variable assignments are commutative

Only need to consider assignments to a single variable at
each node —> b = d and there are (dn) leaves

Backtracking Search

* Depth-first search for CSPs with single-variable assignments is
called backtracking search

e Backtracking search is the basic uninformed algorithm for CSPs

function BACKTRACKING-SEARCH(¢sp) returns a solution, or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment,csp) returns a solution, or
failure
if assignment is complete then return assignment
var < SELECT-UNASSIGNED- VARIABLE(Variables/csp/, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, ¢sp) do
if value is consistent with assignment according to Constraints|csp] then
add { var = value } to assignment
result ¢+~ RECURSIVE-BACK TRACKING(assignment, csp)
if result # failue then return result
remove { var = value } from assignment
return feilure

10

Improving Backtracking
Efficiency

 General-purpose methods can give huge gains in speed:

 Which variable should be assigned next?
—> Most constrained variable, i.e., minimum remaining
values (MRV) heuristic

* Tie-breaker among most constrained variables
—> Most constraining variable

e |n what order should its values be tried?
—> Least constraining value

e Can we detect inevitable failure early?

11

Detecting Fallure Early

* Forward Checking

» Keep track of remaining legal values for unassigned variables
* Terminate search when any variable has no legal values

e Constraint propagation
e Simplest method: repeatedly enforces constraints locally

* Arc consistency

* Simplest form of propagation makes each arc consistent
e X —> Y is consistent iff for every value x of X there is some allowed y
* Arc consistency detects failure earlier than forward checking

 Can be run as a preprocessor or after each assignment

12

Arc consistency algorithm
AC-3

function AC-3(¢sp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X;, Xo, ..., X,}
local variables: gueue, a queue of arcs, initially all the arcs in ¢sp

while gueue is not empty do
(Xi, X;)+ REMOVE-FIRST(queue)
if RM-INCONSISTENT-VALUES(X;, X;) then
for each X in NElGHBORS[X;] do
add (Xi, X;) to queue

function RM-INCONSISTENT-VALUES(X;, X;) returns true iff remove a value
removed < false
for each zin DomAIN[X;] do
if no value y in DomAIN[X;] allows (z,y) to satisfy constraint(X;, X;)
then delete z from DOMAIN[X,|; removed - true
return removed

13

Local Search for CSP

Hill-climbing, simulated annealing typically work with "complete” states, i.e.,
all variables assigned

To apply to CSPs:

e allow states with unsatisfied constraints

e Operators reassign variable values
Variable selection: randomly select any conflicted variable
Value selection by min-conflicts heuristic:

e choose value that violates the fewest constraints

e |.e., hill-climb with h(n) = total number of violated constraints

14

Summary

CSPs are a special kind of problem:

e states defined by values of a fixed set of variables

e goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per node
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work to
constrain values and detect inconsistencies

lterative min-conflicts is usually effective in practice

15

