Artificial Intelligence

Inference in First Order Logic

Outline

Reducing first-order inference to propositional inference
Unification

Generalized Modus Ponens

Forward chaining

Backward chaining

Resolution

Universal instantiation (Ul)

 Every instantiation of a universally quantified sentence is
entailed by it:
vv a kE Substitute({v/g}, a)

for any variable v and ground term g

Existential instantiation (El)

 For any sentence q, variable v, and constant symbol k
that does not appear elsewhere in the knowledge base:

3v a k Substitute({v/k}, a)

e Kk is called Skolem constant

FOL Inference By Reduction

Reduction to propositional logic
e |nstantiating the universal sentence in all possible ways

e Give each ground term sentence a proposition symbol

Every FOL KB can be propositionalized so as to preserve entailment

A ground sentence is entailed by new KB iff entailed by original KB

e |dea: propositionalize KB and query, apply resolution, return result

Problem:

e with function symbols, there are infinitely many ground terms, such as
Father(Father(Father(John)))

e generate lots of irrelevant sentences

Reduction

Theorem: If a sentence a is entailed by an FOL KB, it is entailed
by a finite subset of the propositionalized KB. (by Herbrand, 1930)

|dea:

Forn =010« do
create a propositional KB by instantiating with depth-n terms
see if a is entailed by this KB

Problem: works if a is entailed, loops if a is not entailed

Theorem: Entailment for FOL is semi-decidable, that is, algorithms
exist that say yes to every entailed sentence, but no algorithm
exists that also says no to every non-entailed sentence. (by
Turing, 1936, Church, 1936)

Unification

A process of making two first order logic sentences with universal quantified
variables identical by finding a substitution.

Unify(a,B) =0 if a6 = 36
Transaction(Toys, x, John) & Transaction(Toys, Teddy, John), 6 = {x/Teddy}}
Transaction(Toys, X, y) & Transaction(z, Teddy, John), 8 = {x/Teddy, y/John, z/Toys}}

Transaction(Seller(x), x, John) & Transaction(y, Teddy, John), 8 = {x/Teddy, y/
Seller(Teddy)}}

Transaction(Toys, x, John) & Transaction(Toys, Teddy, x), 8 = {fail}, but
Standardizing apart eliminates overlap of variables, e.g., Transaction(Toys, Teddy, X17

0 = {x/Teddy, x17/John}

Transaction(x, Teddy, x) & Transaction(Toys, Teddy, John) = {fail}

Most General Unifier

Transaction(Toys, X, y) & Transaction(Toys, Teddy, z),
0 = {x/Teddy, y/z }

or 0 = {x/Teddy, y/John, z/John}

or 0 = {x/Teddy, y/Mary, z/Mary}

The first unifier is more general than the rest.

There is a single most general unifier (MGU) that is unique
up to renaming of variables.

MGU = { x/Teddy, y/z }

The unification algorithm

function UNIFY(z, 3, 6) returns a substitution to make x and ¥ identical
inputs: z, a variable, constant, list, or compound
y, a variable, constant, list, or compound
6, the substitution built up so far

if 6 = failure then return failure
else if r = y then return ¢
else if VARIABLE?(z) then return UNIFY-VAR(z, y,0)
else if VARIABLE?(y) then return UNIFY-VAR(y, z, 0)
else if ComrounD?(z) and ComMPOUND?(y) then
return UNIFY(ARGS[z], ARGS[y], UNIFY(OPr[z], OP[y], 6))
else if LisT7(z) and LisT?(y) then
return UNIFY(REST|[z], REST[y], UNIFY(FIRST|Z], FIRST[Y], #))
else return failure

The unification algorithm

function UNIFY-VAR(var, z,0) returns a substitution
inputs: var, a variable
I, any expression
6, the substitution built up so far

if {var/val} € 6 then return UNiryY(val, z,6)
else if {x/val} € 6 then return UNIFY(var, val, 6)
else if OcCUR-CHECK?(var, z) then return failure
else return add {var/z} to @

Generalized Modus Ponens
(GMP)

p1, P2’ ..., pPn’, (P1 AP2A ... APn=()FQO

where pi'® = piB for all i from 1 to n

Example:
Product(Teddy), Sells(Toys, Teddy),
Transaction(Toys, Teddy, Mary),

Transaction(x, y, z) = Owns(z, y) F Owns(Mary, Teddy)
0 is {x/Toys, y/Teddy, z/Mary}

GMP can be used with KB of definite clauses (exactly one positive literal)

All variables assumed universally quantified.
(Existentially quantified variables are replaced by Skolem constants.)

11

Soundness of GMP

Need to show that
P1, ..., Pn, (P1 A ... APn=0) EQO

provided that pi'@ = pi@ for all i from 1 to n

Lemma: For any sentence p, we have p F p6 by Ul

Proof:

e PIA.. APn=qQEMPEP1A...APn=0)0E (PO A ... A pnB = g6)

e P1, ..., Pn EP1'A... APn EP1'OA ... APnO

* From previous two steps, g0 follows by ordinary Modus Ponens

12

Forward chaining algorithm

function FOL-FC-ASK(KB, a) returns a substitution or false

repeat until new is empty
new+— { }
for each sentence rin KB do
(pyA... A pp = @) STANDARDIZE-APART(T)
for each # such that (py A ... A pu)f = (pi A ... A p,)b
for some pi,...,p, in KB
q' + SuBsT(0, q)
if ¢' is not a renaming of a sentence already in KB or new then do
add ¢' to new
¢+ UNIFY(¢', a)
if ¢ is not fail then return ¢
add new to KB
return false

13

Properties of forward
chaining

Sound and complete for first-order definite clauses
Datalog = first-order definite clauses + no functions
FC terminates for Datalog in finite number of iterations
May not terminate in general if a is not entailed

This Is unavoidable: entailment with definite clauses is
semi-decidable

14

Efficiency of forward
chaining

* Incremental forward chaining: no need to match a rule on
iteration k if a premise wasn't added on iteration k-1

* match each rule whose premise contains a newly added
positive literal

e Matching itself can be expensive:
e Database indexing allows O(1) retrieval of known facts
* e.g., query Missile(x) retrieves Missile(M1)

 Forward chaining is widely used in deductive databases

15

Backward chaining
algorithm

function FOL-BC-ASK(KB, goals, #) returns a set of substitutions
inputs: KB, a knowledge base
goals, a list of conjuncts forming a query
@, the current substitution, initially the empty substitution { }
local variables: ans, a set of substitutions, initially empty

if goals is empty then return {f}
q' + SUBST(#, FIRST(g0als))
for each rin KB where STANDARDIZE-APART(7) = (g1 A ... A pn = ¢q)
and &' + UNIFY(gq, ¢') succeeds
ans+— FOL-BC-ASK(KB, |p1, po|REST(g0als)|, COMPOSE(0, #')) U ans
return ans

SUBST(COMPOSE(B1, 82), p) = SUBST(62, SUBST(61, p))

16

Properties of backward
chaining

Depth-first recursive proof search: space is linear in size of
proof

Incomplete due to infinite loops
e fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (both success and
failure)

e fix by using caching of previous results (extra space)

Widely used for logic programming

17

Resolution

Full first-order version:
p1 \/ e \/ pk, q1 \/ cee \/ qn
E(1 V- VPAVP+V-VPkVgIV- = VQg-1Vg+ V- VQqnb

where Unify(pi, —q;) = 6.

The two clauses are assumed to be standardized apart so that they share no
variables.

For example,
—Healthy(x) v Happy(x), Healthy(John) F Happy(John)

with 0 = {x/John}

Inference: Apply resolution steps to CNF(KB A T a) to see whether it is
unsatisfiable.

Complete for FOL

18

Conversion to CNF ()

* Everyone who loves all animals is loved by someone:
vx (vy Animal(y) = Loves(x, y)) = (3y Loves(y, X))

* Eliminate bi-conditionals and implications
vx (Tvy —"Animal(y) v Loves(x, y)) V (3y Loves(y, X))

e Move " inwards: "vXp=3IX 'p, 'IXPpP=VX P
vx (3y (T Animal(y) v Loves(x, y))) Vv (3y Loves(y, X))
vx (3y 7 —TAnimal(y) A —Loves(x, y)) Vv (3y Lovesl(y, X))
vx (3y Animal(y) A —Loves(x, y)) Vv (3y Loves(y, X))

19

Conversion to CNF (Il)

Standardize variables: each quantifier should use a different one
vx (3y Animal(y) A —Loves(x, y)) Vv (3z Loves(z, x))

Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function of the
enclosing universally quantified variables:

vXx (Animal(F(x)) A 7 Loves(x,F(x))) v Loves(G(x),x)

Drop universal quantifiers:
(Animal(F(x)) A 7 Loves(x,F(x))) vV Loves(G(x),x)

Distribute v over A :
(Animal(F(x)) v Loves(G(x),x)) A (T Loves(x,F(x)) v Loves(G(x),x))

20

