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Universal instantiation (Ul)

 Every instantiation of a universally quantified sentence is
entailed by it:
vv a kE Substitute({v/g}, a)

for any variable v and ground term g



Existential instantiation (El)

 For any sentence q, variable v, and constant symbol k
that does not appear elsewhere in the knowledge base:

3v a k Substitute({v/k}, a)

e Kk is called Skolem constant



FOL Inference By Reduction

Reduction to propositional logic
e |nstantiating the universal sentence in all possible ways

e Give each ground term sentence a proposition symbol

Every FOL KB can be propositionalized so as to preserve entailment

A ground sentence is entailed by new KB iff entailed by original KB

e |dea: propositionalize KB and query, apply resolution, return result

Problem:

e with function symbols, there are infinitely many ground terms, such as
Father(Father(Father(John)))

e generate lots of irrelevant sentences



Reduction

Theorem: If a sentence a is entailed by an FOL KB, it is entailed
by a finite subset of the propositionalized KB. (by Herbrand, 1930)

|dea:

Forn =010« do
create a propositional KB by instantiating with depth-n terms
see if a is entailed by this KB

Problem: works if a is entailed, loops if a is not entailed

Theorem: Entailment for FOL is semi-decidable, that is, algorithms
exist that say yes to every entailed sentence, but no algorithm
exists that also says no to every non-entailed sentence. (by
Turing, 1936, Church, 1936)



Unification

A process of making two first order logic sentences with universal quantified
variables identical by finding a substitution.

Unify(a,B) =0 if a6 = 36
Transaction(Toys, x, John) & Transaction(Toys, Teddy, John), 6 = {x/Teddy}}
Transaction(Toys, X, y) & Transaction(z, Teddy, John), 8 = {x/Teddy, y/John, z/Toys}}

Transaction(Seller(x), x, John) & Transaction(y, Teddy, John), 8 = {x/Teddy, y/
Seller(Teddy)}}

Transaction(Toys, x, John) & Transaction(Toys, Teddy, x), 8 = {fail}, but
Standardizing apart eliminates overlap of variables, e.g., Transaction(Toys, Teddy, X17

0 = {x/Teddy, x17/John}

Transaction(x, Teddy, x) & Transaction(Toys, Teddy, John) = {fail}



Most General Unifier

Transaction(Toys, X, y) & Transaction(Toys, Teddy, z),
0 = {x/Teddy, y/z }

or 0 = {x/Teddy, y/John, z/John}

or 0 = {x/Teddy, y/Mary, z/Mary}

The first unifier is more general than the rest.

There is a single most general unifier (MGU) that is unique
up to renaming of variables.

MGU = { x/Teddy, y/z }



The unification algorithm

function UNIFY(z, 3, 6) returns a substitution to make x and ¥ identical
inputs: z, a variable, constant, list, or compound
y, a variable, constant, list, or compound
6, the substitution built up so far

if 6 = failure then return failure
else if r = y then return ¢
else if VARIABLE?(z) then return UNIFY-VAR(z, y,0)
else if VARIABLE?(y) then return UNIFY-VAR(y, z, 0)
else if ComrounD?(z) and ComMPOUND?(y) then
return UNIFY(ARGS[z], ARGS[y], UNIFY(OPr[z], OP[y], 6))
else if LisT7(z) and LisT?(y) then
return UNIFY(REST|[z], REST[y], UNIFY(FIRST|Z], FIRST[Y], #))
else return failure




The unification algorithm

function UNIFY-VAR(var, z,0) returns a substitution
inputs: var, a variable
I, any expression
6, the substitution built up so far

if {var/val} € 6 then return UNiryY(val, z,6)
else if {x/val} € 6 then return UNIFY(var, val, 6)
else if OcCUR-CHECK?(var, z) then return failure
else return add {var/z} to @




Generalized Modus Ponens
(GMP)

p1, P2’ ..., pPn’, (P1 AP2A ... APn=()FQO

where pi'® = piB for all i from 1 to n

Example:
Product(Teddy), Sells(Toys, Teddy),
Transaction(Toys, Teddy, Mary),

Transaction(x, y, z) = Owns(z, y) F Owns(Mary, Teddy)
0 is {x/Toys, y/Teddy, z/Mary}

GMP can be used with KB of definite clauses (exactly one positive literal)

All variables assumed universally quantified.
(Existentially quantified variables are replaced by Skolem constants.)
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Soundness of GMP

Need to show that
P1, ..., Pn, (P1 A ... APn=0) EQO

provided that pi'@ = pi@ for all i from 1 to n

Lemma: For any sentence p, we have p F p6 by Ul

Proof:

e PIA.. APn=qQEMPEP1A...APn=0)0E (PO A ... A pnB = g6)

e P1, ..., Pn EP1'A... APn EP1'OA ... APnO

* From previous two steps, g0 follows by ordinary Modus Ponens
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Forward chaining algorithm

function FOL-FC-ASK(KB, a) returns a substitution or false

repeat until new is empty
new+— { }
for each sentence rin KB do
(pyA... A pp = @) STANDARDIZE-APART(T)
for each # such that (py A ... A pu)f = (pi A ... A p,)b
for some pi,...,p, in KB
q' + SuBsT(0, q)
if ¢' is not a renaming of a sentence already in KB or new then do
add ¢' to new
¢+ UNIFY(¢', a)
if ¢ is not fail then return ¢
add new to KB
return false
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Properties of forward
chaining

Sound and complete for first-order definite clauses
Datalog = first-order definite clauses + no functions
FC terminates for Datalog in finite number of iterations
May not terminate in general if a is not entailed

This Is unavoidable: entailment with definite clauses is
semi-decidable
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Efficiency of forward
chaining

* Incremental forward chaining: no need to match a rule on
iteration k if a premise wasn't added on iteration k-1

* match each rule whose premise contains a newly added
positive literal

e Matching itself can be expensive:
e Database indexing allows O(1) retrieval of known facts
* e.g., query Missile(x) retrieves Missile(M1)

 Forward chaining is widely used in deductive databases
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Backward chaining
algorithm

function FOL-BC-ASK( KB, goals, #) returns a set of substitutions
inputs: KB, a knowledge base
goals, a list of conjuncts forming a query
@, the current substitution, initially the empty substitution { }
local variables: ans, a set of substitutions, initially empty

if goals is empty then return {f}
q' + SUBST(#, FIRST(g0als))
for each rin KB where STANDARDIZE-APART(7) = (g1 A ... A pn = ¢q)
and &' + UNIFY(gq, ¢') succeeds
ans+— FOL-BC-ASK(KB, |p1, . ... po|REST(g0als)|, COMPOSE(0, #')) U ans
return ans

SUBST(COMPOSE(B1, 82), p) = SUBST(62, SUBST(61, p))
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Properties of backward
chaining

Depth-first recursive proof search: space is linear in size of
proof

Incomplete due to infinite loops
e fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (both success and
failure)

e fix by using caching of previous results (extra space)

Widely used for logic programming
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Resolution

Full first-order version:
p1 \/ e \/ pk, q1 \/ cee \/ qn
E(1 V- VPAVP+V-VPkVgIV- = VQg-1Vg+ V- VQqnb

where Unify(pi, —q;) = 6.

The two clauses are assumed to be standardized apart so that they share no
variables.

For example,
—Healthy(x) v Happy(x), Healthy(John) F Happy(John)

with 0 = {x/John}

Inference: Apply resolution steps to CNF(KB A T a) to see whether it is
unsatisfiable.

Complete for FOL
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Conversion to CNF ()

* Everyone who loves all animals is loved by someone:
vx (vy Animal(y) = Loves(x, y)) = (3y Loves(y, X))

* Eliminate bi-conditionals and implications
vx (Tvy —"Animal(y) v Loves(x, y)) V (3y Loves(y, X))

e Move " inwards: "vXp=3IX 'p, 'IXPpP=VX P
vx (3y (T Animal(y) v Loves(x, y))) Vv (3y Loves(y, X))
vx (3y 7 —TAnimal(y) A —Loves(x, y)) Vv (3y Lovesl(y, X))
vx (3y Animal(y) A —Loves(x, y)) Vv (3y Loves(y, X))
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Conversion to CNF (Il)

Standardize variables: each quantifier should use a different one
vx (3y Animal(y) A —Loves(x, y)) Vv (3z Loves(z, x))

Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function of the
enclosing universally quantified variables:

vXx (Animal(F(x)) A 7 Loves(x,F(x))) v Loves(G(x),x)

Drop universal quantifiers:
(Animal(F(x)) A 7 Loves(x,F(x))) vV Loves(G(x),x)

Distribute v over A :
(Animal(F(x)) v Loves(G(x),x)) A (T Loves(x,F(x)) v Loves(G(x),x))
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