#### Computer Science CSCI 251

#### **Systems and Networks**

Dr. Peter Walsh
Department of Computer Science
Vancouver Island University
peter.walsh@viu.ca

#### Internet Architecture Model

• the Internet is a network of networks



# Internet Standard(s)

- - de facto Internet standard
  - contains network-communications and application-support protocols
  - components are documented in RFC
     (Request For Comment) publications from
     the Internet Society (ISOC)
     see https://tools.ietf.org/html
     e.g., https://tools.ietf.org/html/rfc1122



4: Computer Science CSCI 251 — Lecture 13

# Internet Protocol Suite (RFC 1122)

- Application Layer
  - example protocol(s): ssh and ftp
- Transport Layer
  - example protocol(s): TCP and UDP
- Internet Layer
  - example protocol(s): IP
- Link Layer
  - example protocol(s): ARP

### Alternative Layer Organization

Layer 5 Application

Layer 4 Transport

Layer 3 Network

Layer 2 Data Link

Layer 1 Physical

Layer 4 Application

Layer 3 Transport

Layer 2 Internet

Layer 1 Link

RFC 1122

Network Interface Controller (NIC) Device Driver

### Internet Communication Paradigm

- □ TCP
  - connection oriented communication
  - arbitrary length transfer of a sequence of bytes
     from a sending application to a receiving application
  - messages exchanged between a sending and receiving application will never be lost, duplicated, damaged, or received out of order
- O UDP
  - connectionless best-effort communication
  - datagram oriented (fire-and-forget)
  - messages exchanged between a sending and receiving application can be lost, duplicated, damaged, and received out of order

### FTP-TCP Layer-Navigation Host B Host A **Inter Host Communication** FTP **FTP** Router TCP **TCP** IΡ IΡ Token Ring Ethernet Token Ring Ethernet Ethernet LAN (IEEE 802.3) Token Ring LAN (IEEE 802.5)

## echoClient/Server-UDP Layer-Navigation



#### Internet Communication Models

- Peer-To-Peer
  - distributed communication
- Client-Server
  - centralized communication
  - server executes and waits for a service request from one or more clients
  - server does not need to know which client(s)
     will request service
  - client(s) execute and request service from a server
  - client must know which server to contact for service

## Server/Service Identification

- Server
  - 32 bit IP (v4) address
  - e.g., otter: 104.128.240.4
- Service
  - 16 bit port number
  - e.g., ssh: port 22

#### Concurrent Servers

- TCP Applications
  - non-concurrent server would/could see unacceptable delays
- UDP Applications
  - typically affords no advantage