Computer Science CSCI 251

Systems and Networks

Dr. Peter Walsh
Department of Computer Science
Vancouver Island University
peter.walsh@viu.ca

Recap

- Virtualization (Process)
 - OS: Three Easy Pieces: chapters 1-6
- Persistence
 - OS: Three Easy Pieces: chapters 36-?
- Historical Perspective
 - The UNIX System: Making Computers More Productive (1982)
 - https://www.youtube.com/watch?v=tc4ROCJYbm0
 - Brian Kernighan: UNIX, C, AWK, AMPL, and Go Programming ...
 - https://www.youtube.com/watch?v=09upVbGSBFo

von Neumann Architecture

Personal Computer Hardware

Photo from PC Magazine

Busses

- Memory Bus
 - connects the CPU with main memory
 - proprietary
- General I/O Bus (Expansion Bus)
 - connects high speed I/O devices to the memory bus
 - standardized, e.g., PCI and ISA
- O Peripheral Bus
 - connects low speed I/O devices to the memory bus
 - standardized, e.g., SCSI, SATA, USB, IDE

Busses cont.

- PCI (Peripheral Component Interconnect)
- ISA (Industry Standard Architecture)
- SCSI (Small Computer System Interface)
- SATA (Serial AT Attachment)
- USB (Universal Serial Bus)
- IDE (Integrated Drive Electronics or PATA)

Model Architecture

PC Motherboard Evolution https://www.youtube.com/watch?v=sewt2pqc3us

Generic I/O Device and Protocol

```
Registers:
                         Status
                                   Command
                                                Data
                                                       Interface
                  Microcontroller (CPU)
                  RAM/ROM
                                                       Internals
                  ASIC (application specific integrated circuits)
// disk write operation using polling
While (STATUS == BUSY);
DATA = "data";
COMMAND = "write";
While (STATUS == BUSY);
```

Generic I/O Device and Protocol cont.

Write CPU Utilization cont.

Interrupts

Write CPU Utilization cont.

- Direct Memory Access (DMA)
 - arranges data transfers between a device and main memory

Data Transmission

- O Programmed I/O (PIO)
 - CPU is directly involved with data movement
- Direct memory Access (DMA)
 - method that allows an input/output (I/O)
 device to send or receive data directly
 to or from the main memory, bypassing the CPU
 - process is managed by a DMA controller (DMAC)

Modern PC Architecture

- Intel launches all-new PC architecture with Core i5/i7 CPUs
- https://arstechnica.com/gadgets/2009/09/ intel-launches-all-new-pc-architecturewith-core-i5i7-cpus/

CPU I/O Instructions

- Explicit I/O
 - e.g., x86 in and out instructions
- Memory Mapped I/O
 - device registers are available as if they were memory locations
 - e.g., store(0x2015, 43)

I/O Device Types

- O Block
 - composed of fixed-sized blocks
 - buffering is required
 - seeking is possible
 - e.g. devices: disk drives
- Character
 - composed of a stream of sequential bytes
 - no buffering is required
 - no seeking is possible
 - e.g. devices: keyboard, serial port

OS-I/O Integration

• e.g., File System Stack

17: Computer Science CSCI 251 — Lecture 5