Computer Science CSCI 251

Systems and Networks

Dr. Peter Walsh
Department of Computer Science
Vancouver Island University
peter.walsh@viu.ca

Disk Architecture

2: Computer Science CSCI 251 — Lecture 6

Disk Architecture cont.

Terminology

- drives have 1 or more platters
- each platter has 1 or 2 sides
- each side has a read/write head
- each side is divided into concentric tracks
- platers and read/write heads are stacked
- a cylinder is the set of tracks the can be accessed simultaneously
- each track is divided into sectors
- moving a head over a track (or cylinder) is called seeking
- moving a head over a sector typically requires seeking and platter rotation

Sectors

- Size
 - smallest addressable part of the disk for read/write e.g., 512 bytes
 - Unix uses the term block (1 or more sectors)
- Address
 - cylinder#, head#, sector#
- Access Time
 - seek: move head to track/cylinder
 - rotational delay (latency): spin sector under the head
 - transfer: time to read/write data
- Old Drives
 - rotational delay (latency) << seek time
- Modern Drives
 - ullet rotational delay (latency) pprox seek time

Disk Architecture Optimizations

- Sector Interleaving
 - because of the overhead associated with read/write transfer, it may be more efficient to interleave sectors that are read in sequence
- Cylinder Skew
 - is a form of interleaving employed to decrease overhead when accessing consecutive sectors that cross track boundaries
- Multi Zoned
 - outer tracks are bigger and may be configured to contain more sectors that smaller inner tracks

Sector Interleaving

7: Computer Science CSCI 251 — Lecture 6

Sector Interleaving cont.

Cylinder Skew

Cylinder Skew cont.

10: Computer Science CSCI 251 — Lecture 6

Workloads

- Random
 - issue reads to random locations on disk
 - e.g., database management system (DBMS)
- Sequential
 - read a large number of sectors consecutively
 - e.g., sequential file processing

I/O Time

(Fig. 37.5 pp 463)	Cheetah	Barracuda	
RPM	15,000	7,200	
Average Seek	4ms	9ms	
Max Transfer	125 MB/s	105 MB/s	

Random Workload - 4 KB Reads Sequential Workload - 100 MB Read

Random Workload (Cheetah)

Random Workload (Cheetah)

Random Workload (Barracuda)

Random Workload (Barracuda)

Sequential Workload (Cheetah)

Tseek = 4ms

RPM = 15,000

1 rotation =
$$\frac{60}{30,000}$$
 = 0.0025

=> Trotation = 2 ms

Max Rate = 125 MB/S

Ttransfer (100MB) = $\frac{100}{125}$ s = $\frac{600}{300}$ ms

Sequential Workload (Cheetah)

Sequential Workload (Barracuda)

Tseek =
$$9 \text{ ms}$$

RPM = $7,200$
 $\frac{1}{2}$ rotation = $\frac{60}{14.400}$ = 0.0041 s
 \Rightarrow Trotation = 4.1 ms
Max Rate = 105 MB/S
Thansfer (100 MB) = $\frac{100}{105}$ s = 952 ms

Sequential Workload (Barracuda)

$$T_{10} = T_{seek+1} + T_{transfer}$$

$$\approx 950 \text{ ms}$$

$$R_{10} = \frac{5}{T_{10}} = \frac{100}{950} \text{ MB/ms} = 105 \text{ mB/s}$$

21: Computer Science CSCI 251 — Lecture 6

Comparison Summary

(Fig. 37.6 pp 464)

Cheetah Barracuda

RPM 15,000 7,200

Average Seek 4ms 9ms

Max Transfer 125 MB/s 105MB/s

Random Workload - 4 KB Reads Sequential Workload - 100 MB Read

I/O Rate (Random) 0.66 MB/s 0.31 MB/s

I/O Rate (Sequential) 125 MB/s 105 MB/s

Disk Scheduling

- Old Drives
 - rotational delay (latency) << seek time
 - OS responsible for disk scheduling
- Modern Drives
 - ullet rotational delay (latency) pprox seek time
 - disk drive controller more involved in scheduling

Disk Scheduling cont.

- Shortest Seek Time First (Scan)
 - sweep the disk servicing requests in-order across the tracks
- Shortest Position Time First
 - needs disk controller support
- OS/Controller Cooperation
 - OS selects a set of I/O requests to be serviced optimization is based on OS criteria
 - disk controller schedules requests for service optimization based on detailed knowledge of disk drive architecture and performance