Into the Core
A look at Tiny Core Linux

Lauri Kasanen et al

Into the Core: A look at Tiny Core Linux

Lauri Kasanen et a

Publication date 2013

Copyright © 2013 L auri Kasanen

This work is licensed under the Creati ve Commons A ttri buti on-NonCommercial -ShareA like 4.0 Unported
License To view a copy of this license, visit http://crestivecommons.org/licenses/by-nc-s3/4.0/ or send a
letter to Creative Comnons, 444 Castro Street, Suite 900, M ountain View, Caifornia, 94041, USA.
Contributed chapters are copyrighted by their respecti ve authors.

Firstedition

ISBN 978-952-93-3391-2

ThelSBN is only valid for the printed edition. The PDF is not consi dered a published work in the sense
that it would need an | SBN.

Dedication & thanks

This book wouldn’t be possible without Robert Shingledecker,
without whomTiny Coreitsalf wouldn't exist

| would like to thank Andyj, Coreplayer2 and Richard A. Rost for
helpful comments and suggestions.

Chapter contributors to this book, in alphabetica order:
® Luiz Femando Estevarengo

Table of Contents

PrEfACE ..ottt ix
L CONVENLIONS ... se s s e eaasaanans iX
I 1IN0 & DEBIC USE ... 1
1. COre CONCEPES ...t ne e nseneenan 3
1.1, PhilOSOPhIES ... 3

1.2, Frugal instal ... 4

1.3. BOOL COUES ...t 5

1.4. USB and other external storage devices 5

1.5. Dependency checking and downloading 6

1.6. Modes of Operationcceeerereneneeneeeneeeseseenens 6

1.7. The default mode: doud/intemet ... 6

1.8 MOUNE MOGE ...t 7

1.9. COPY MOGE ...t 8
1.10. Backup/restore & other persistence options............ 8
1.10.1. Backup/restoreocoevreeneeeneneeneeeenns 9

1.10.2. Persistent hOmMeccoeeveeireeeeseseeeas 9

111 BOHOM NG oo 10

2. INSEIING o 11
2.1. With the official instalerccoveeeveeeeeeee 11
2.1.1. Step 1: Source and destinationccce.... 12

2.1.2. Step 2: File systemtypecccoeveeceeecneee 13

2.1.3. Step 3: BOOL COAES ... 14

2.1.4. Step 4: Optiond partscccceveveevenereneeennns 15

2.1.5. Step 5: GOod t0 §O7 ...veeeeeeerreeeesrenesenanas 16

2.2. From Windows via core2usbcceevvvveiiinnnenn, 18

2.3. ManUAllY ..o 18
2.3.1. Step 1. Partitioning & formetting 19

2.3.2. StED 2! FIlES e 20

2.3.3. Step 3: Bootdoaderccceeeeerenreieneeeninnaans 20

3. Basic package management via GUI ... 23
4. Basic package management via CLI ..., 29
4.1, tC10AA .. 30

4.2. Comparing package MBNAGE'Sccoueeereersessessensenns 32

5. Updating the base SyStemccoeeieneneneeseseeesenaeens 33

I nto the Core

6. Updating eXENSIONSccoerieenieneeeerenseesensesesessasseensens 35
6.1, APDS wevereeereerreressesaessesassesassssesessesassesesessenassesansesens 35
6.2. tCeUPdAe ... 36
7. PESISEENCE ...t nan 39
7.1 BACKUD ettt 39
7.2. Persistent hOme/Optcveeveeerererenieenesesassasessenens 40
7.3. Parsonal eXtensioncccceeeninisenensssesesse s 41
7.4. Other data StOrageccceveeeeeieeecesre e 41
7.5. COMMON SELUD ..o 41
7.6. SUNMTYTEIY oo ss e na e 42
8. Managing eXIENSIONScccoereeerreneeenrenseneesessensesessassaneesans 43
8.1. MD5 chetkingc.coveueeeeeeiereesisesaee s seenenas 43
8.2. Check for orphanscccceceveeeneieeeeeseeece s 43
8.3. Dependencies and ddetionsccceeeeeneeenrennne 43
8.4. Check onboot unneeded ..., 44
8.5. Onboot/ondemand maintenanceccoeevvereeeenenee 44
9. Virtualizaion - Coreas aguestccoeeveneenenrenenncnennenans 45
9.1 QemU / KVM .ot 45
9.2, VIUGDOX ..cveveiereiseeeeiesassesesesseessssassssesssssssssssanens 45
0.3, VMWEE ... enenn 46
0.4, HYPEV .ttt 46
10. Bootrodes explaingdccooeeeeeneeseneesieeseee e 47
10.1. tce- extensions diredorycccceeeveeeeeeseeesnennnn 47
10.2. restore - backup 10Cationcccceeeeneeieneneeneenenn 48
10.3. waitusb - slow drive detectionccccceeeveenenene. 48
10.4. swapfile - swap in afile ... 49
10.5. home and opt - Persistenceooeveveeereseeeseenenes 49
10.6. Ist - extension list ... 50
10.7. base - don't load extensionscccceeeeeeneeneennnn 50
10.8. norestore - don't load backupcccoveeeiviiciiienens 50
10.9. safebackup - enable safe backup by default 51
10.10. showapps - verbose extension loading 51
10.11. iso - load extensions froman ISO file................. 51
10.12. vga - framebuffer resolutioncccceveeeeienneee 52
10.13. xsetup - configure X during bootc.c........ 52
10.14. lang - systemIocalecccoeeeeieeenenieeneseeanns 53

| nto the Core

10.15. kmap - console keymapccceeeeeneerenenenennens 53
10.16. text - boot to text mode ... 53
10.17. superuser - boot to text mode asroot 54
10.18. noicons - don't display iCONSc.cceeveueeerecnnenne 54
10.19. noswap - don't use the swap partition 54
10.20. nodhcp - don't graban IP address ... 54
10.21. noutc - BIOS isusing locd time........ccccceeeennes 55
10.22. {Z - HMEZONE ... 55
10.23. pause - wait for a keypress before conpleting
DOOL ..o 55
10.24. aon and syslog - start daemonscccceeeeeenenees 55
10.25. host - set hoSt NAME ... 56
10.26. protect - use enarypted backupccceveeeieenee 56
10.27. secure - set password on bootccceeeeeeerennee 56
10.28. noautologin - disable autometic login 57
10.29. user - set the default usemame ... 57
10.30. desktop - specify window manager 57
10.31. laptop - forceloading of |gptop modules 57
10.32. noembed - use a separate tpfs ..o 58
10.33. nozswap - disable compressed swap in
RAM e 58
10.34. xvesa - set resolution directlyccceeeeereeceennnes 58
10.35. mydata - use a different name for backup.......... 59
10.36. blacklist - blacklist modulesccoeveeereerenannne 59
10.37. multivt - setup multiple consoles.................... 59
. AQVENCED USE ...ttt 61
11, REMESEENING ..o enens 63
111 PrereqUISItESc.coeeeeieeeceeeee s 63
11.2. UNpacking ...cccoovevveiieiiieieceeeeessiesesre s 63
11.3. PACKING weoveereieeeiesieeeesieseeasse s sse e saenans o4
11.4. Creaing an SO IMagecccvvvvivvcieiececece 65
12. Remestering with a separate imagecccoeeeeeeneereennnes 67
12.1. PractiCe IMBJEcoveeeeeeereeeee e 67
12.2. Booting with morethan one initrd 68
13. Including extensions in the 1SOcccocevvivecinesieiienns 69
13.1. Exanple: including Nanococeeeeeneeeeeneeneennns 69

I nto the Core

14. Creating a personal (data) extensioncccccceeeeeeneenene 71
15. Creating an eXtenSioncccceeeeeeeneeeneneeseeeseesanessens 73
15.1. BUIlding €SS ...t 73
15.2. Creating the extension directory tree..................... 74
15.3. PaCKing UD ..cecoveeeiieeeiesieseeesse s sessa s ss e s s 75

16. Extension instal SAiptscoeeeeeeneeeseesieesae e 77
16.1. EXamPI€ NANO ..o 77

17. Creating custom boot Codescovveeveiececieiecese e 79
1. COore iNEmMElSc.cceeeeeecese e nnans 81
18. The TCZ fOmMELccocvvvviirccee s 83
18.1. Squashfs ParaMmELErScccceerereeereseeeee e 84
18.2. Wha'S iNSIAE? ..o sseseasasnanens 85

19. The boOt ProCESSccceeeeeeeee e 87
19.1. The first step: /init ..o 87
19.2. Rea BOOL 1Nt ... 88
19.3. BOOESITED: I'CS ... 88
19.4. Man boot tC-CONFIQ ..veueeereeereinieeneereeseeeseeneens 88
19.5. BOOESYNC.SN ..ot 90
19.6. BOOHOCAL.Sh ... 90
19.7. ROOU'S [OQIN ..ot 90
19.8. RegUIAr USEXc.ooviieeeeieieeeie e 90
19.9. The X Window SyStEMccceeverenrererenenensesssenens 91
19.10. X0 e 91

20. The tce directory STUCIUIEccoeeeeeieeeeeeseeeeeeeas 93
20.1. FirStUN .o 94
20.2. ONDOOLISE ... nens A
20.3. XWHRNISE ... A
20.4. OndemBNd SCHPLSoeeveeeeeeeeieseeeee e sessesaesaeeenas 95

21. Accompanying extension filesccoveeciencienicenenns 97
211 DEP FIlES .o 97
21.2. INfO FIlE5 oo 98
21.3. LISt il€5 e 98
214, M5 fIlES e 99
215 Treefil€S e 99
21.6. ZSYNC IS v 100

IV, PrOJECES ..o e 101

Vi

I nto the Core

22. Simple Web Server ... 103
22.1. Custom CGl examplecooevenieeneeinieesieens 104
23. Automated network instalercceeeveeiencenene 105
23. L STt fIlES oo 105
23.2. Theinstaller Saiplocoeeeevneereereeeseeeeee 105
23.3. Packing Up & tBStNG ..o 108
24. Private cloudccoiieieeieieeeiee s 109
24. 1. SSH . 109
24.2. HTTPD .ot 110
24.3. ConNECtions, POITScoeeveeeenieieeeniessesssssaesaenens 111
24.4. Security considerationsccecvveveieiecennnnns 111
24.5. Final resultcoooveieeeeeeeee e 112
25. A thin remote desktop clientcoceveieeeceiececieienne 115
25.1. Add the rdesktop extension and dependencies
O e 1SO s 115
25.2. Make the boot wait for getting an |P address 116
25.3. Fire up rdesktop when the systemis up 117
254, RESUIL ... 119
26. File hosting VIQ FTP ..o 121
26.1. Installing & configuralionccceveeeniencnennas 121
26.2. TESHNG ..veveeereeereeieiesesieessssesa s essssasas e sasassansns 123
26.3. RESUIES ... 123
27. Network bootingccceeeieeineseeeesieeee e 125
27.1. Sdeding the base iMBgecccceeeeveeenreneeiennns 126
27.2. Are separate extensions needed?ccceveeee 126
27.3. Other conSideraionscceereeneeeneneereneneeennas 127
28. Bringing up old hardware - common gotches 129
28. 1. BIOS ...t 129
28.2. SOUNA ...t sae s 130
28.3. VESA SUPPOIT ... 130
28.4. NEWOIKING ...cecoveeenierinrenieesenseseesessessenessaneenensens 131
28.5. Bigger hard drives ... 131
28.6. Mamory [imitaionscccceeevveenesicececieeenne 132
29. A WED KIOSKcoveveierenanierainsaanssassssassssssssssessssesansesens 135
29.1. Sdedting eXtENSIONScccceeveenrenieesesse e 135
29.2. Configuring Core extensionsccoeeeeeneeneenens 136

Vii

I nto the Core

20.2.1. iDESK ICONS ...c.eoveeeeeeieeieeee e 136

29.2.2. iDesk autoloadccceeeeveeeeecieeeseeen 138

29.2.3. Firefox profil@ccccveeeeeveeecieiecciesienns 138

29.2.4. Firefox autoloadccccceveeiveveeneeseennennes 139

29.2.5. Configuring Firefoxcccovvvvvineniennenne 139

29.3. Creating our add-0Ncoceeereerereneeasensesansesannns 140

29.3.1. Folder and file structure.........cccccevevnnee. 140

29.4. Shutdown considerationsccceeereeeseneeenenns 146

20.5. RESUIES ...t 146

INAEX e 149

vili

Preface

This book mainly targets those with some familiarity with Linux,
with no fear of the command line. A spirit of tinkering is advised,
but not necessary.

Reading the chapters in order is not necessary, so fed freeto jump
to the interesting parts directly.

The book is current for the latest stable 4.x for the x86 architecture,

4.7.7 at the time of writing, though many of the prind ples gpply to
other versions and architecture ports.

1. Conventions

This is anote.
NOTE
NOTE
Thisis atip.
| }

i\ This is awaming.

Shell saript looks like this:

$ echo Code to be typed into an unprivileged shell.
This is a comment.
$ echo This is a long line extended \
into many lines. The backslash can be written \
as is, the shell will understand it.

Part I. Intro & basic use

Chapter 1. Core concepts

This chapter is an edited version of the oneavailable on

e
HOTE our web page

On behalf of the Tiny Core Team, wd come. Plesse takethetime
to read this document and understand the phil osophies behind Tiny
Core.

One quick user beware: Tiny Coreis not a tum-key operding
system At least initially, almost all users will require intemet access
to the online repository.

1.1. Philosophies

As aquick summery, Tiny Core loads itsf into RAM from storage,
then mounts applications on storage, or installs applications to
RAM fromstorage. An extension is said to be loaded or installed
regardless of the method used (mount vs. copy to RAM).

Tiny Coreis different because users are not encouraged to perform
atraditional, hard-driveinstallation of the operating system. Sure,
ahard driveinstallation is possible, but Tiny Coreis designed to
run fromaRAM copy areated at boot time. Besides being fast, this
protects system files from changes and ensures a pristine systemon
every reboot. Easy, fast, and sinple renew-ability and stability are
prindplegoals of Tiny Core.

If this sounds similar to what many live CDs do, the techniques are
indeed similar and shared.

Frugd insl

1.2. Frugal install

Frugal is the typical installation method for Tiny Core. Thatis, it

is not atraditiond hard drive instalation, which we call "scater
mode, because all thefiles of the system are scattered all about
thedisk. With frugal, you basically have the systemin two files,
vmlinuz and core.gz, whose locaion is spedfied by the boot |oader.

Any user files and extensions are stored outside the base OS.

Jd bin il srv |l boot
jiboot |gisys [l tce
jicdrom [itmp

i dev [l uSr

[l etc i var

jihome | initrd.img

i lib - vmlinuz

i lib64

i media
[mnt

wiopt

[l proc

j rofs

| 'root

i run

ld sbin

ld selinux

Boot codes

1.3. Boot codes

Depending upon how Tiny Coreis installed (GRUB, LILO, CD,
USB stick ...), users have the option to use boot codes on each
reboot (CD, etc), or to store those codes in a boot configuraion file
(GRUB, LILO, etc.).

Boot codes (boot arguments) affect how Tiny Core operates by
defining options & boot-time Thereare lots of boot codes. To view
all theavailable options, peruse the boot code lists by pressing F2,
F3or F4 a the CD boot prompt.

Theboot code base is notable Use base to simul ate the default
mode and skip all application extension installing or mounting. This
is a useful tool for troubleshooting, extension building, upgrading
... and just checking out how fast Tiny Core can boot on your
hardware

1.4. USB and other external storage
devices

Tiny Core can be instructed to search for data on extemd devices &
boot time: a USB pen drive, compact flash, or other portable media.
This nead not be the boot media; in fact, for exampleit is common
to store user data on a hard disk, while booting from cd or USB.

Sometimes, hardware doesn’t wake up fast enough for Tiny Core’s
boot sequence. If the hardware doesn’t wake up intime, Tiny Core
will move on and finish booting without that data.

If you store data on externd /s ow media, it may be necessary to use
the boot code waitush=5 or similar. This pauses the boot process

for five seconds, waiting for slow devices to register with the system
bus.

Dependency checking
and downloading

1.5. Dependency checking and
downloading

Tiny Core makes getting applicaions as essy as possible The Apps
tool provides application deails fromindividual .info files - thisis
enlightening reading material when choosing applications. Always
read the .info files, and re-read them before upgrading to catch
changes and concams.

Dependencies are the pieces (other gpplications, libraries) required

for an gpplication. In short, the Tiny Core Apps tool will take care
of downloading and checking dependend es for you.

1.6. Modes of operation

Themodes of operation mix up how Tiny Coreloads, mounts,

and installs & boot time (see philosophies, above, if you want to
clarify what those three things mean here). Tiny Core has threemain
modes:

® Default mode: cloud/intemet

® Mount mode: TCZ/install

® Copy mode: TCZ/instd| +copy2fs.flg/ist

Again, somemay say thereis a"Traditional mode: install to a hard
drive', but that's not really a modeat dl. If you wantto doit, go

right ahead. It's just not one of the original goals of the project, so
expect to keep both piecesiif it breaks.

1.7. The default mode: cloud/internet

By default, Tiny Core Linux operates like a doud/intemet client. In
default mode:

M ount mode

Tiny Core boots entirely into RAM. Users run the A pps tool to
browse the repository and download applications. A pplicaion
E xtensi ons (downloaded gpplications) last only for the current
session. Tiny Corejust uses as much RAM as possible.

Since Cloud/I nternet M ode operates out of RAM, it runs fast.
Cloud/I ntemet Mode is nomadic and quick-booting. Application
extensions are lost on reboot, but only the systemfiles have to be
restored. If you would like applications stored locally and set up on
each reboot, then consider the mount and copy modes.

1.8. Mount mode

This is the most widdy used and recommended method for using
Tiny Core.

Applications are stored locally in adirectory named tceon a
persistent store, eg. a supported disk partition (ext2, ext3, ext4,
vfat). A pplications are optiondly mounted on reboot (see onboot.|st
in forumand wiki). Mounting applications saves RAM for other
Uses.

Unless specified with a boot code of tce=xdyz Tiny Core will
search all drives on the computer and use the first fice directory it
finds for storing/loading extensions.

Tiny Core uses the Apps tool to place applicaion extensions in this
tce/ directory and to flag them as either "OnBoot" (mount at boot)
or "On Demand" (do not mount at boot, but create a spedial menu
section for easy access and display anicon if available).

|-- firefox.tcz

| -- opera.tcz
- thunderbird. tcz

Copy mode

1.9. Copy mode
The copy modeis a modification of the mount mode.

Sel ected application extensions are copied into RAM instead of
mounted. Applications can be RAM-loaded in bulk (copy2fs.flg),
sdectively loaded into RAM (copy?2fs.Ist), or mounted. The Apps
program tracks instal latioryl oading options (bulk copy, selective
copy, €tc). Boot times are longer, since copying to RAM takes more
time than mounting, but runtime speed, espedially first start, is
gretly faster.

Copy mode briefly extends the boot timeto gain some of theRAM-
run speed of default mode and the persistence of a pure mount
mode.

In copy mode, itis important to note that extensions can be elther
mounted or copied into RAM. The A pps program meakes this
flexibility possible by keeping track of user sdections.

It should be noted that using a bulk selection, that is, loading all
extensions to RAM, dlows the storage to be unmounted, and the

systemto avoid any corruption on power |0ss.
1.10. Backup/restore & other
persistence options

Aside from the mount mode and the tee directory of gpplication
extensions, Tiny Core supports pearsistent/permanent:

® backup and restore of personal settings, and

® persistent /home and /opt directories.

Backup/restore

1.10.1. Backup/restore

Tiny Core indudes thefiletool utility for saving persond settings
and data. The text file /opt/ filetool.Ist lists files and directories to
be backed up a power down and restored at reboot. Thelist may

be changed manually (using vi, nano, etc) or via the scripts in the
Tools menu; note that the entry for /opt/. filetool.lst should never

be removed fromthe list itsdf. Filetool dso supports exclusion of
particular files via /opt/ xfiletool 1st.

By default, filetool.lst includes the entire homeftc directory, and
xfiletool.lst excludes some unnecessary caches and tenporary
directories.

Filetool writes the backup file mydata.tgz. Thelocation of
mydata.tgz can beinitidly set using the boot option restore=hdXY,
restore=hdXY /directory, or, after boot, by selecting Backup/
Restore from the Control Pand. If the restore code is not used, Tiny
Core will search for mydata.tgz in available root directories a boot.
Conversdly, the boot option norestore ignores any existing backup
files, a useful tool for troubleshooting and upgrading.

Further settings and configurations are stored or executed using /
home/td/.xsession, /home/td/.profile, /opt/bootiocal.sh, and /opt.

1.10.2. Persistent home

Just as Tiny Core offers persistence options for downlocaded
application extensions, so does it for your home directory. These are
set using boot codes/options.

The bootcode home=hdXY will autometically setup /home/tc

to "bind" to /mnt/hdXY /home/tc. The home boot code lets Tiny
Core coexist with other Linux instdlaions by inserting thetc user
directory under a pre-existing /home directory. Also, Tiny Core
cannot auto-detect a persi stent home directory, so the home boot
option is always required.

Bottom line

1

The decision on whether to use the default backup, orto setup a
persi stent home/opt directory depends on the amount of data you
intend to save, and the device you use for storage (USB flash and
SSDs may have limited write cycles, for instance).

.11. Bottom line

If you have madeit this far, congratulaions! Y ou’re ready to
get Tiny Coreand get started. Browse the wiki, the forums, the
download pages, and join the community conversaion.

Wdcome fromthe Tiny Core Team

10

Chapter 2. Installing

A Coreinstal consists of three parts: a bootioader on some media,
the main image (kemd and core.gz) on some media, and the toe
directory on some media.

While these can all be on the same disk, they need not be; all three
can be on separae mediaif needed.

A Coreinstd| is completely nomedic, it doesn't read any
settings fromtheinstall system

v
This means you can install to adrive on one system, and
then move the driveto the target system without any
issues. Thisis useful for example for |gptops that can't
boot fromCD or USB.
2.1. With the official installer

Theofficial installer is induded in the Core Plus edition, but can
also be downloaded separatdy to install froma TinyCore or a
command-line Coreimage (tc-install.tcz).

The command-line version, tc-install.sh, is not covered here, butit
follows the same pronmpts as the grephica version.

TheGUI instdler is afive-step process.

11

Step 1: Source
and destination

2.1.1. Step 1: Source and destination

/mnt/sr0/boot/core.gz

In thefirst step, we nead to sdect the install media, insta| type,
and the target. The instdler may be ableto detect the install media
automaticaly as inthisimege; if not, dick on the "Path to core.gz"
text fidd to browse for theinstall media.

Thethreeinstall types are frugal, USB-HDD, and USB-ZIP. Frugd
is the default type, it may be installed to a partition, and usudly
works for bootable USB sticks too. USB-HDD uses the whole disk
and dlightly different formatting, which may hdp the USB stick
boot on computers it otherwise wouldn't. USB-ZIP is for older
BIOSes that neaded ZI P-drive emulation in order to boot fromUSB.

Step 2: File
systemtype

If this is the only Linux system on the conmputer, select "Install boot
loader" and "Mark partition active" (the latter only if not using the
whole disk).

2.1.2. Step 2: File system type

Tiny Core Installation

Here we sdlect the formatting, defaulting to ext4.

Step 3: Boot codes

2.1.3. Step 3: Boot codes

Core Installation

Tiny Core accepts the following persistence options:

tce={hdal|sdal} Specify Restore TCE apps directory
restore={hdallsdallfloppy} Specify saved configuration location
waitusb=X Wait X seconds for slow USB devices
Scan or Specify swapfile
Specify persistent home directory
opt={hdallsdal} Specify persistent opt directory
local={hdallsdal} Specify PPI directory or loopback file
Load alternate static yyy,lst on boot
Specify alternate backup file name

Skip TCE load only the base system
Turn off the automatic restore

Saves a backup copy (mydatabk,tgz)
Display application names when booting
7xx from table (See below)

Prompt user for Xvesa setup

If you want to enter any boot codes, this is the place. By default you
don’'t need any.

Y ou can change these | ater by editing the bootl oader

% corfigfile

14

Step 4: Optional parts

2.1.4. Step 4: Optional parts

This pageis only visible when installing from the Core Plus image.
Y ou can chooseto insta | some useful extensions here. They can be
instaled afterwards too, this choice is not specid or irreversible

Step 5: Good to go?

2.1.5. Step 5: Good to go?

Source: /mnt/sr0/boot/core.gz
Type: frugal

Target: sda

Formatext4

Options:

Install X GUI

Inthefinal step, theinstaller lets us review the choices before
starting. If everything’s in order, click Proceed.

16

Step 5: Good to go?

_onix||

Tiny Core Installation

Review

Writing zero's to beginning of /dev/sda
Partitioning /dev/sda

/dev/sda:

Formatting /dev/sdat
UUID="42b44225-db7e-4h4-ae7a-dfedsf17bf0e”
Applying extlinux.

Setting up core image on /mnt/sda

Installation has completed

Theinstaller will happily chug away, and assuming nothing out of
place happens, you'll seea success screen likethe one above Ready
to reboot to Core?

Booting Core 4.7.7
Running Linux Kernel 3.0.21-tinycore.
Done.
Done.

setcs/fstab
Setting Language to C Done.

Possible swap partition(s) enabled.
Done.

Setting keymap to us Done.

Setting hostname to box Done.

17

From Windows
via core2usb

2.2. From Windows via core2usb

Core Teammerrber bmarkus areated a sinple USB installer for
Windows users. It's not recommended to use third-party installers
such as LiLi or Unetbootin, as they won't create the third part of the
instal (the tce directory), meaning more work for you.

This utility is available from http://core2usb.sf.net/. If you don’t
want to bum a CD, it's a convenient one-dick way to instal Coreto
USB.

File Help
C:\Users\mb\Downloads\TinyCore-4.7.7.iso BROWSE |

Selected drive:

K: (957.3/1916.3MB) -
L: _ (249.4/249.4MB)

|

Status: Ready to install INSTALL |

2.3. Manually

A manud instadl can be done fromany Linux distro. For advanced
usersit’s often faster than buming aCD or otherwise instaling via
theinstaller.

As the exact steps vary a lot depending on your program and host
distro choices, we'll only cover the generd parts here.

18

Step 1: Partitioning
& formetting

2.3.1. Step 1: Partitioning & formatting
BIOS installations

Create anormal partition on the target disk using your favorite
program for GUI we recommend Gparted, for commend line
cfdisk; both should beavailablein dl mgjor distros.

The partition should be formatted with a Linux file system. We
recommend ext4 for general use. If thetargetis an USB stick or
other media with limited writes, you may want to use ext2 instead,
as journding file systens do extra writes to preserveintegrity.

If thetarget is a regular hard disk, it's recommended to dso create
and format a swap partition.

Using more exotic file systems like X FS needs either a

ST rerraster or some other way to load the XF'S support, in
order to access the XFS partition.
UEFI installations

Create aGPT EFI boot partition and a normd partition using your
favorite program: for GUI we reconmend Gparted, for command
line gdisk; both should be availablein all mgjor distros.

TheEFI partition should be formatted with vfat and the normral
partition should be formatted with a Linux file system.

Older Apple machines typically use 32-bit EFl whereas
more modem A pple machines and PC hardware use 64
O bit(U)EFI. This means that you will need to use either
coreb4 or corepuretd with 64-bit (U)EF! installations.

TE
NOLE

19

Step 2: Files

2.3.2. Step 2: Files

Thelatest Corefiles are avail able separatdy for your convenience
- no need to unpack themfromthe | SO file. Download core.gz
and vmlinuz from your closest mirror, fromthe directory
release/distribution files. Thelink for the main mirror is http:/
repo.tinycordinux.net/4.x/x86/release/distribution files/.

Theusud location for the kemel and initrd is under /boot on the
target partition, but you can place them anywhere.

To hold your extensions, create a root directory cadled tce on the
target patition.

2.3.3. Step 3: Bootloader

Finally, you need to insta | a bootl oader to the target disk’s MBR,
and point it to thekemd and initrd.

For BIOS instdls, the syslinux family, lilo, grub 0.x, and grub 2
have been tested to work fine. For UEFI installs, only grub 2 has
been tested.

For a norma boot, no boot codes need to be added - thelocaion
of thetce directory will be autodetected. If you antidpate having
multiple tce directories, then it's recommended to specify which one
you want as a boot code

For USB sticks, and other removable/s ow media such as SD cards,
you might need to add the waitusb bootcode. It tells Coreto wait
the given number of seconds to give slow devices time to register,
and optionally polls for agiven partition label or UUID to proceed
as soon as the device shows up.

Thesyntax is waitush=5 to wait five seconds, or
waitush=20: LABEL =mydisk to wait up to twenty seconds for the
partition labded "mydisk" to show up.

20

Step 3: Bootl oader

Finally, you might want to limit the kemd’ s boot output by adding
the quiet bootcode

A typical grub 0.97 config file might look like this:

default 0
timeout 10

title Core

root (hd0,0)

kernel /boot/vmlinuz quiet waitusb=5
initrd /boot/core.gz

Likewise, atypicd grub 2 config file (with the partition’s UUID
replaced):

search --no-floppy --fs-uuid --set=root "fdsf-gt434"

menuentry "Core" {
linux /boot/vmlinuz quiet waitusb=5
initrd /boot/core.gz

}

21

Chapter 3. Basic package
management via GUI

Thefirst contact is often the graphical package manager, the Apps
tool. Y ou can start it from the bottom launcher under the name
Apps, or if using an altermate window manager without whbar, under
the menu.

Apps: Regular Applications (tcz) Do)
Search |%

Inf0| FiIeS| Depend5| Size|

onBoot 3] 0 TCE _

URI: |http://repo tinycorelinux.net/

Le’s quickly go over theinteface

Thetwo white main areas arefor the content On the l&ft, once
connected, you will have a list of packages, whilethe right pand
displays the info you' ve sdected from the four tabs.

Thetabs are respectively the extension’s info file, thelist of files in
the extension, the list of dependencies, and an analysis of thetotd
download size needed.

23

The drop-down menu on the bottom, currently saying "OnBoot",
defines what to do with the selected extension. The modes will be
covered later on in detail.

Thetce bar displays the path to your current tce directory. If it's the
default (RAM), it will bered; if it's on permenent storage, it will

be green. The set button to the right lets you set the tce directory if
needed.

TheURI bar shows the selected mirror.

The search drop-down menu lets you do three kinds of searches: by
name, by tag, and by thefiles it provides.

Finally, the main menu in the upper-left comer defines the mode of
adion.

To start browsing, click on the A pps menu - remote - browse

Apps: Regular Applications (tcz) [m=h|

Search

Cloud (Remote) W
Load App Locally Select Mirfor

Maintenance » | Select fastest mirror
Installation Options »
Quit

epends | Size |

Go| TCE:] Set |
URI: |http:/frepo tinycorelinux.net/

We can browse thefull list, or geta list of search results with the
upper-right search bar. To retumn to the full list froma search results
list, click again on remote - browse.

24

[Ppps: Reguiar ppplications (tez) — _joox|
[Apps | [Search 7¢ |
Select Remote Extension Info| Files | Depends| Size |

:gﬁg:;:: tez Title: ace-of-penguins, tcz
aalib.tcz. Description: Ace of Penguins - card games
abiword-2,8-dev.tez Version: 1.2-8 (Debian patches)
abiword-2,8-doc, tez Author: DJ Delorie

abiword-2,8,tcz Original-site: www,delorie,com/store/ace

L__J

abiword-docs-2,8,tez Copying-palicy: GPL

abiword-plugins,tcz Size: 572K

abiword, tcz Extension_by: Curaga

ace-of -penguins, tcz Tags: fAce Penguins card games

acl-dev,tcz Comments: Everuone was jumping on walls here without
acl,tez some decent card games :)

acpi-dac.tez Change-log: 2008/09/27 Original

acpl,toz Current: 2008/10/10 Updated menu format to Juf
acpid.tcz

acpitool.tcz
actkbd,tcz
advconp, tcz
aewm++,tcz
agg-dev,tcz
aga,.tez
aiccu,tez
aiksaurus,tez

OnBoot 3 Go| TCE: | Set
URI: |http://repo.tinycorelinux.net/

With Ace of Penguins selected, we are shown theinfo file by
default. If we'reinterested in the fil es, dependencies, or how much
we'd need to download, the tabs are now active.

Le’sgoontoinsdl it. But with which method?

Install methods

OnBoot
Thedefault method. This extension will be installed, and added
to the onboot list, to be mounted on the foll owing boots.

OnDemand
A loading saript will be generated for this extension. | nstead of
being loaded on boot, the icorymenu entry for this extension will
load the extension when you first need it.
This option speeds up your boot time, at the cost of making the
first start of the application slower.

Download +|oad
The extension will be downloaded and installed for this session
only. If you have set up your tee directory, it will reside there,
but sinceitis not added to the onboot list, it will not be loaded
after a reboot.

Download only
The extension will only be downloaded, nothing more will be
done.

Le’s pick OnBoot today, the default. Clicking on Go, a download
progress window will pop up, and soon we're informed that the
install succeeded:

| Status | ace-of-penguins.tcz OK. |

Should theinstall fail (network eror, mdSsumfailure...), you will
be informed of the issue with a popup.

Le’s enjoy awdl deserved game of penguin FreeCdll now:

26

=
<1 4O [~ &
*~y
m_mm oot
*
* ¢ o
o M~ ¢

v g
] m N
le. eIre T
QD)
mb...‘.'
HED® D
vol i
ey
mm—mm Cen
*
“« & »
- ol Ll

27

Chapter 4. Basic package
management via CLI

Inthis chapter wée Il go over the basic use of the command line
equivalent to Apps, tce-ab, and the direct interface, toe-load.

Starting tce-ab, we are greeted with a line-based interface:

$ tce-ab
tce-ab - Tiny Core Extension: Application Browser

S)earch P)rovides K)eywords Q)uit:

Thethree search options are the same as with the A pps program
(note that keywords =tags).

For example, doing a keyword search for "browser™, we are greeted
with alist of extensions with a matching tag. Selecting the number
of the extension fires up the extension’s info filein theless viewer.

tce - Tiny Core Extension browser

1. appbrowser-cli.tcz
2. arora.tcz

3. bonecho-gtk2.tcz

4. bonecho.tcz

5. chimera2.tcz

6. chromium-browser-locale.tcz
7. chromium-browser.tcz
8. conkeror.tcz

9. dillo2-doc.tcz

10. dillo3-doc.tcz

11. dillo3-ssl-doc.tcz
12. dillo3-ssl.tcz

13. dillo3.tcz

14. dooble.tcz

15. dwb.tcz

Enter selection (1 - 80) or (q)uit, (n)ext, \
(p)revious:

tce-load

After having read the info fileand pressing g to quit less, tce-ab
gives us a set of choices on what to do withit:

A)bout I)nstall O)nDemand D)epends T)ree F)iles siZ)e \
L)ist S)earch P)rovides K)eywords Q)uit:

About brings us back to the info file, install and ondemand
have the same functions as with Apps, a do depends, files and
size Displaying the tree file will show the recursive chart of

dependencies, used by the size function to cal culate the necessary
download size.

Listwill relum us to thesdection list, and the search options will let
us to do a new search.

4.1. tce-load

Tceload is the non-interactive tool used behind the scenes by the
boot process, Apps, and tce-ab.

Running it with the help option gives us a short overview of what it
does:

tce-load

$ tce-load -h
Usage: tce-load [-1 -w -wi -wo -wil -ic -wic]{s} \
extensions
-1 Loads local extension
-w Download extension only
-wi Download and install extension
-wo Download and create an ondemand item
Adding -c to any -i option will force a one time \
copy to file system
Adding -1 to any -i option indicates load only - \
do not update onboot or ondemand
Adding -s to any option will suppress OK message \
used by apps GUI

Example usage:
Load local extension:

tce-load -i /mnt/hdal/tce/optional/nano.tcz
Download into tce/optional directory, updates OnBoot
and installs:

tce-load -w -1 nano.tcz
Download only into tce/optional directory:

tce-load -w nano.tcz

For example, if wealready know the name of the extension needed,
we can ask for it to be downloaded and instaled (the OnBoot

mode):

$ tce-load -wi ace-of-penguins

Thetool will operae in the set tee directory, so unless given full
path, it will look there first. Suppose we had sdected “Download

only" for A ce of Penguins before, and thus it was not installed for
this session. Wecould install it with:

$ tce-load -i ace-of-penguins

Just like most Core tools, tceload and tce-ab are shdl

scripts. As far as package menagears go, they arefairly
v simple and easy to understand.

Y ou are encouraged to look under the hood.

31

Comparing
package managers

4.2. Comparing package managers

apt (deb) yum (rpm) | toe-load (tcz)
Install a apt-getinstall |yuminstall pkg | tce-load -wi
packagefrom | pkg pkg
therepo
Install froma |dpkg-i pkg yum localinstall | tce-load -i pkg
local file pkg
Search apt-cache yum search tce-ab

search pattern | pattern

Listinstalled | dpkg - mm-ga Is /usr/local/
packages tceinstaled

32

Chapter 5. Updating the
base system

As new minor and patch versions are released, for example 4.7 and
4.7.1, how do we update to the | atest core?

Theprocessis usudly as simple as downloading the latest vmlinuz
and core.gz, and replacing them on your boot media. This can be
done live fromthe system as Tiny Core boots to RAM, and so you
can operate on the boot files in any way you wish.

After areboot, you will be running the latest core code. To check
the running version, you can run the version command:

$ version
4.7.5

It is important to review the rel ease notes for any items in your
backup that may need to be updated. Often there are tweaks to the
user files such as .profile which you may have customized to your
needs; any such files are mentioned in the rel ease notes.

Thelatest pristine copies of any user files can befound in /etc/skel.
If you have customized some of the files, please compare the latest
copy with your version to seeif any changes need to be done

With the base system updated, it’'s recommended to update
extensions next.

33

Chapter 6. Updating
extensions

Extensions are usually updated more often than the base system.

As extension updates may require some aciion on your pat, itis
recommended to view the info files of updated extensions before
doing the update. The A pps tool will let you do that, while the
command-line update is a batich one.

In both cases, the updated extensions are stored in astaging
directory, and the actud update will be applied on the next reboot.
This ensures that no running app will be interfered with by things
being changed from under it.

6.1. Apps

Starting with the GUI update method, fire up Apps, and sdect Apps
- Maintenance - Check for updates.

Apps: Regular Applications (tcz) =00

J Cloud (Remote) » Results
Load App Locally ||
MdS Checking
Installation Options » |G GIAYoTsEICE]
Quit Check for Orphans
Dependencies And Deletions
Check Onboot Unneeded
OnBoot Maintenance
OnDemand Maintenance

| Process Selected Item(s) |
TCE: |Amp/tce/optional |

35

tce-update

After ashort while, Apps will have theleft panel populated with dl
extensions with available updates, with the status fromthe check
displayed in the right pandl.

If there is a newer Core varsion available or some of the extensions

have been removed fromthe repository, this information will be
shown in the right pand.

Apps: Regular Applications (tcz) =

Select Updates Results

ace-of -penguins, tcz Warning:

nano,tcz You are running version 4,7.4

ncurses, tcz The latest release is 4,7.7

Please Standby... Now checking your extensions.
Scan for updates completed,

Process Selected Item(s) |
TCE: [imp/tcefoptional |

Clicking on an itemwill show that extension’s info file: whether the
update is just a bog-standard version update, or whether some action
is required will be visible there.

To selectall items for processing, pick the first one, hold shift, and
pick the last one. Clicking on "Process sdected item(s)" will start
the update

6.2. tce-update

Simply running sudo tce-update will do a batch update of all
extensions.

36

tce-update

However, if there is not enough spaceto store the updated
extensions, you will need to do an in-place update, which requires
a boot with the boot codes base norestore. These options cause no
extensions to be loaded, meking it safe to write the files direcy.

Thesaipt will warmn you and exit, if the spaceistootighttodo a
normnal update.

37

Chapter 7. Persistence

With the many options for making your data persistent and not
disappearing on power-off, it might be a bit confusing to decide
which to use In this chapter we will go over dl the options, listing
ther pros and cons, and the most common setup.

7.1. Backup

Thebackup is on by default as long as you have set up a toe
directory. It will saveall your personal files in your home directory,
and the system config files under /opt, excluding conmon browser
caches.

Soall iswdl, right? The data is safe, restored on boot, saved on
power-off. However, as backup happens in those two spots, having
a large amount of data will slow down your boot and shutdown
process.

Thebackup is ideal for when you have asmall amount of datato
save, such as gpplication config files or browser bookmarks. A few
ten megabytes of PDFs on the other hand will be slow.

The other angle is the number of writes. With backup, the storage
media is only written to on shutdown. This is excellent if the media
happens to be a device with limited writes, such as USB flash, SSD,
Compact Flash/Secure Digital menory card, or similar.

No action is needed to use backup as long as atce directory is setup;
you will be asked in the shutdown did og whether to do backup, and
the box is ticked by default.

If not doing backup is more common for you, you can
change the default to be unticked by adding the line
v BACKUP=0to your .profile.

Persistent home/opt

The backup is controlled by two files in /opt: .filetool.Ist lists
everything to include, and xfiletool.lst lists everything to exclude.
Exdusions will ovaride inclusions.

For the syntax of thesefiles, see the documentation on tar.

7.2. Persistent home/opt

If you have more data to store in these locations, for example
personal documents in /home or a third-party binary goplicationin/
opt, it's recommended to use persistence for these locations.

Thefilesystem on the partition needs to support linux permissions;
FAT and NTFS will not work.

However, every write to these locations will then go directly to the
device, so unless thedeviceis a hard drive, you'll need to weigh on
how often it is written. For the "big binary installed in /opt" case,
writes would be rare; but for the home directory, all kinds of apps
will have caches, configuration files, and other data therethey will
update.

To meke use of these options, you need to add a bootcode for each.
Y ou may specify thedevice directly, via UUID, or viaits labdl.

For example, to usethe sdal partition for home and sda2 for opt,
the boot codes would be home=sdal opt=sda2.

Using absol ute names can be unrdiable if thereare multiple drives
present; how fast they initialize affedts their naming. So if thereare
multiple intermal drives, or you wish to use an extermd drive, it's
recommended to use ether UUID or labd.

With a partition labeed "HomeDrive"', the home bootcode would
be home={_.ABEL =HomeDrive. With a partition’s UUID, the
bootcode would be home=JUID=f4t4-65467yg-6546.

40

Personal extension

Y ou can view the atached drives' labels and UUIDs with
the blkid command.

the corresponding directory from /opt.filetool.|st.
Otherwiseit is both backed up and stored directly,
removing any benefits of ather.

i\ When using either of these options, you need to remove

7.3. Personal extension

If you have read-only data that needs to bein thefilesystem, it's
recommended to meke a personal extension out of it instead of
keeping itin the backup.

For more details on this option, see the Creating extensions chapter.

7.4. Other data storage

In no way are you restricted to just these options; storing your data
is completay up to how you wantto do it

For example, say you have a few gigabytes of music stored in sdal/
music. Y ou could add asymlink there to your home directory, file
nmanager, or many other ways; here, we'll symlink it as /music, so
that it's nicely accessible to any application.

If thedriveis an intemal one with a stable name, you can just add
the symlink to your backup. The backup process will only save the
symlink, it will not descend into the pointed directory.

If the music drive’s name might change, it is better to createthe
symlink in bootlocal.sh based on the drive’s labd for example For
more information on booti oca .sh, see the Boot process chapter.

7.5. Common setup
With the altermati ves listed, what is the common setup?

41

Summary

The common setup is one hard drive, persistent home, backup, and
optionally other links there

To set this up on an installed system, you only need to add the
home=sdal bootcode to your bootloader’s config file (where sdal
is your partition), and reboot. To seethat it's being used, type
mount.

7.6. Summary

Backup
® Happens on boot and shutdown
® Slow if you havelots of data

Persistent home/opt

® Direct writes

® No boot overhead
Personal extension

® Only static data

® Very litte boot overhead
Any combinations are allowed.

42

Chapter 8. Managing
extensions

This chapter will detail the options under the Maintenance menuin
Apps.

8.1. MDb5 checking

This option allows you to do a corruption check for downloaded
extensions. Many types of corruption are detected when trying to
install an extension, but for some types, it can be useful todo a
menual check.

8.2. Check for orphans

Orphans are extensions not found in the repository. They may
have been removed for various reasons, or they may be custom
extensions not submitted to the repository.

Y ou aren’t required to take any action in case an extension was
removed fromthe mirrors; if it works for you, you can continue to
use it, but no updates will becoming.

8.3. Dependencies and deletions

This mode |&s you view various reports on the dependendies of
all extensions present in the tce directory. Some may requirethe
reporting database to be build, those will be greyed out until the
helper database is built.

43

Check onboot
unneeded

One function in particular, update dep files, is occasiond ly neaded.
Occasionally there' s server-side reorganization of the dependendies,
or an extension may be renamed, requiring you to update the
dependency files to avoid inconsistencies. A fter updating the .dep
files, it's recommended to use the "Fetch missing dependendes’, in
case a dependency was added, or an extension was renamed.

The other function, extension ddetion, allows you to mark an
extension to be deleted on the next reboot. All of their dependencies
that aren’t needed by anything else will aso be removed.

8.4. Check onboot unneeded

This option andyzes your onboot.Ist to seeif there areany
redundant iterms. For exanple, gtk2 is a dependency of Firefox, so if
you listed both gtk2 and Firefox, gtk2 would be redundant.

Having a compact list without such redundand es helps boot time.
8.5. Onboot/ondemand maintenance

Thesetwo modes allow you to add and remove extensions fromthe
onboot or ondemand lists. This comes in handy if you earlier chose
to have an extension be on demand, but now it would meke nore
sense to load it on boot, for example

Onboot.Istis aplain text file, so you can edit it with an editor of
your choice in addition to the GUI method listed. Ondermand items

are generated scripts, so managing themmanually is discouraged.

Chapter 9. Virtualization -
Core as a guest

Most virtua machines default to emulating actual, common
hardware Core should run directly on any of those. However, some
default to server hardware, and many have spedal virtudization-
only hardware that can improve performance. This chapter explores
these gotches.

9.1. Qemu / KVM

The premier open source virtudization solution, KVM, runs Core
splendidly. There's built-in support for most of the virtio drivers,
helping the virtud machi ne reach faster paformance.

To meke use of the virtio network card, add -net nic,model=virtio -
net user to your Qermu command line. If you have a special network
setup (other than user), don't add the -net user part

To useavirtio disk, instead of the common -hda file, the syntax is
-drive file=file,if=virtio,media=disk. Use media=cdrom for |ISO
images instead.

Thedefault options to adjust the assigned RAM and CPU cores
work fing -m 256 -smp 4 would givethe VM 256 megabytes of
RAM and four cores.

T he absol ute pointer mode, enabled via -usb -usbdevice tablet,
does not work perfectly with Xvesa, but works fine when using
Xorg.

9.2. Virtualbox

Virtud box shares some code with Qemu, and it can dso usethe
virtio network and block drivers; enable them fromthe settings.

45

VMWare

The mouse support in early Virtualbox 4 rd eases was broken with
Xvesa as far as we know; using Xorg or Virtuadbox 3 instead are
workarounds.

In current Virtud box 4 releases, disabling the absolute pointing
device and using the key-based switching dlows the mouse to work
properly.

9.3. VMWare

VMWare's virtualized network card and SCSI card are supported
(vmxnet3 and pvscsi). However, VM Ware defaults to an emulated
SCSI card whose support is not built-in, but included in the scsi
extension - a catch 22 situation. In order to load extensions froma
SCSI drive, one would need to areate a remaster that includes the
SCSI drivers, or to have a two-step boot with the SCSI drivers on an
IDE disk.

Thebest way is to choose the paravirtualized option for network and
SCSI card though, as they will work directly.

9.4. HyperV

Microsoft HyperV Linux support was still quite unstable during the
time of Core4.x; itis not supported. HyperV is supported in the
coming 5.x versions.

Chapter 10. Bootcodes
explained

Boot codes are away to configure the system, by giving it
information that needs to be available during boot. In this chepter
we will cover each in detall.

TheLinux keme aso exposes a set of boot codes; these will not be
covered here

When using the CD, you can enter them at the command line (with
the Core 1SO) or by pressing tab (with the TinyCore or CorePlus
ISOs) at the desired menu item. On an insta led system, they are
stored in your bootloader’s configuration file.

For example, with grub 0.97, thefileis cdled menu.lst, and the
boot codes are stored on the kemd line:

kernel /boot/vmlinuz quiet showapps

If using extlinux, thefileis caled extlinux.cfg, and the codes are
stored inthe APPEND line:

APPEND initrd=/boot/core.gz quiet showapps

10.1. tce - extensions directory

The tce bootcode spedifies where to locate and store the extensions
and backup. If it's not given, the systemwill scan dl drivesfor a
first-level directory cdled /tce. Thus it may improve boot imeto
specify whereitis.

It neads to be given when there are multi ple such directories (for
exampleto use your USB installation even on mechines with Core
on the hard disk), or if the directory is not named tce.

47

restore -
backup location

T he bootcode supports both labd s and UUIDs (universal
identifiers), which are a necessity with USB drives, as you can't tdl
beforehand how the USB stick might get named.

Examples:

® tce=sdal

® tce=sdal/mydir

® tce=L ABEL =mydisk

® tce=L ABEL =mydisk/mydir
® tce=UUID=fho4-3436t

® tce=UUI D=fho4-3436t/mydir

10.2. restore - backup location

If you wish to store the backup in a separate location (ie. not under
the tce directory), you need to use the restore bootcode.
Example:

® restore=sdal

10.3. waitusb - slow drive detection

Many USB drives are very slow to be detected. Even if pluggedin
before boot, they may take ten seconds to initialize - longer than the
system would take to boot.

Thewaitush bootcode allows you to tell the systemto wait, either
for a spedfic drive, or agiven number of seconds.

When waiting for a specific drive, both labels and UUIDs are
accepted.

48

swapfile -

swapinafile
Examples:
® waitusb=5
® waitusb=15:L ABEL =mydisk

® waitusb=15:UU|D=fho4-3436t
Thefirst form waits five seconds in all cases. The second form waits

up to 15 seconds, continuing immediaey if the drive with the label
"mydisk" shows up.

10.4. swapfile - swap in a file

In norma use, you would use a regular Linux swap partition.
However, if the systemis installed to afat32 partition, and you
cannot create a swap partition, you may use a swap file. It is created
with the GUI tool, and the bootcode is used to tal| the systemto use
it

Examples:

® swpfile

® swapfile=sdal

Thefirst formwill scan for aswap file, the second will scan for it
only in the spedfied drive.

10.5. home and opt - persistence

The home and opt bootcodes let you keep the respecti ve directories
on a parsistent disk. Each bootcode takes either adrive name, a
label, or an UUID.

These options are covered in moredetal in the pearsistence chapter.

49

Ist - extension list

Examples:

® home=sdal

® home=_ ABEL =mydisk
® home=UUID=fho4-3436t

10.6. Ist - extension list

By default, the system loads all extensions in the list onboot.Ist.
Using the Ist bootcode, you can tdl the system to use another list.
Thelist is expected to bein the tce directory, just like onboot.lst.

This is used for example to load different setups via a boot menu: a
quick music environment wouldn’t nead web browsers.

Example:
® Ist=myfilelst

10.7. base - don’t load extensions

In case you don't want to |oad extensions, the base bootcode skips
them. |t may be used as arestore option, as when cormbined with the
norestore option, no drives are mounted during the boot process.

Example:
® base

10.8. norestore - don’t load backup

To get a pristine environment without your settings, you can use the
norestore bootcode. It's useful to seeif something also happensin
a new configuration, for example When combined with thebase
bootcode, no drives are mounted during boot.

50

safebackup - enable
safe backup by default

Example:
® norestore

10.9. safebackup - enable safe backup
by default

While you can sdl ect the safe backup from the backup GUI, this
boot option forces it to dways be used. The safe backup means that
a copy of your previous backup is made before doing a new backup.

Example:
® safebackup

10.10. showapps - verbose extension
loading

By default, the loaded extensions are not listed. This bootcode has
the system show each extension by name when loading it. It slightly
delays the boot, but it's useful to find which extension has trouble
loading, if one has become corrupted, for example

Example:
® showapps

10.11. iso - load extensions from an ISO
file

This boot option tells the system to load extensions froman 1SO
file. It's useful for some virtud setups, and the syslinux memdisk
option (as only DOS-based systens can read the memory disk after
boot).

51

vga - framebuffer
resolution

Examples:

® iso=sdal

® iso=sdal/dir/TinyCore-4.4.is0

10.12. vga - framebuffer resolution

640x480 | 800x600 | 1024x768 | 1280x1024
256 colors 769 771 773 775
16-bit 785 788 791 794
24-bit 786 789 792 795

By default, the system boots in VGA text mode (80x25). To get a
higher-resol ution console, you can give one of the options above
The framebuffer can also be used as a graphical fallback system
with the Xfbdev server, in case the norma VESA server fails to

work.

Example:
® vga=791

10.13. xsetup - configure X during boot

While the X setup script, xsetup, may be launched after boot too,
this bootcode talls the system to launch it during boot. The wizard
lets you choose the resol ution and mouse settings.

Example:

® xsetup

52

lang - systemlocde

10.14. lang - system locale

If you have generated your preferred locd e using the getlocale.tcz
extension, you can use this bootcode to enableit. With a custom
locale, numbers, dates and so on will be printed in your local
convention, and all applications that are translated to your language
will usethat |anguage.

If not set, the default C locdeis used (US English, ASCII).

Example:
® lang=fi_FI

10.15. kmap - console keymap
If you have kmaps.tcz installed, you can usethis bootcode to set
the default console keymep. The console keynmep is also used by
thetiny X servers (Xvesa and Xfbdev), but not thelarger X server
Xorg.

If not set, the defaultis used (US).

Example:
® kmep=qwerty/fi-latin9
10.16. text - boot to text mode

Incasean X server isinstaled, do not boot to graphical mode. If an
X server is not installed, the systemwill always boot to text mode.

Example:

® text

53

superuser - boot to
text mode, as root

10.17. superuser - boot to text mode, as
root

Like the text bootcode above, but boots to aroot shell.

Example:
® superuser
10.18. noicons - don’t display icons

This bootcode will disable the default icon bar, or optionally only
ondemand icons.

Examples:
® noicons
® noicons=ondemand
10.19. noswap - don’t use the swap
partition
By default, the systemwill useall Linux swap partitions
automaticaly. This bootcode will disable their use.

Example:
® noswap

10.20. nodhcp - don’t grab an IP
address

Thesystemwill use DHCP to get an | P address by default. If you
wish to set the IP manudly, you can use this bootcode to skip the
DHCP process.

54

noutc - BIOS is
using locd time

Example:
® nodhcp
10.21. noutc - BIOS is using local time

Incaseyour BIOS is set to your locd timeand not UTC (GMT)
time, use this boot code.

Example:
® noutc

10.22. tz - timezone

This bootcode lets you menually specify your ime zone.

Example:
® z=GMT-8

10.23. pause - wait for a keypress
before completing boot

This bootcode lets you view the system boot messages more easily,
by waiting for an enter key press before conmpl eting the boot.

Example:
® pause
10.24. cron and syslog - start daemons

Thecron and syslog bootcodes will start the respecti ve daemon a
boot. By default neither is running.

55

host - set host name

Example:

® cron
® syslog
10.25. host - set host name

By default the host name s "box". This bootcode lets you set a
customone.

Example:
® host=foo

10.26. protect - use encrypted backup
Thedefault backup is a normd archive file. This option lets you
enarypt the backup using Blowfish with a 448-bit key, generated
fromthe given passphrese If not using a persistent hore, all your

custom configuraion will be in the backup, so this option prevents
someone from reading your backup off the drive.

Example:
® protect
10.27. secure - set password on boot

If you need to set the password on boot, for exanple on afirst run,
use this bootcode.

Example:

® secure

56

noautologin - disable
automatic login

10.28. noautologin - disable automatic
login

With this boot code, the systemwill not log in, but instead ask for
username and password.

Example:
® noautologin

10.29. user - set the default username

Thedefault user is normaly named tc. This bootcode lets you use a
different name.

Example:

® usersjohn
10.30. desktop - specify window
manager

If only onewindow manager is installed, that one will be used. If
you have multi ple window managers installed, this bootcode will let
you specify which one to load.

Example:
® desktop=fluxbox

10.31. laptop - force loading of laptop
modules

Usud ly these modules are autodetected, but if your laptop does not
load the modules (AC, battery, and PCMCIA), you can add this
bootcode to force-load them

57

noembed - use
a separate tmpf's

Example:
® laptop

10.32. noembed - use a separate tmpfs

This is an advanced option that changes wherein RAM Coreis run
from By default, Core uses the tmpf's setup by the kemd; with this
bootcode, Core will setup a new tmpfs file system, and usethat
instead.

Using this bootcode temporarily doubles the RAM use, as both
copies are kept in RAM at once during boot. As an extra copy is
mede, it also slows the boot time It allows GNU df to detect the
freespacein/, used by some proprietary software instdlers.

Example:
® noebed

10.33. nozswap - disable compressed
swap in RAM

By default, Coreuses aRAM compression technique dlowing
you to use more RAM than you actually have. If you experience
problems with this, the nozswap bootcode les you disablethis.

Example:
® nozswap
10.34. xvesa - set resolution directly

This bootcode lets you specify the resolution for Xvesa directly.

58

mydata - use adifferent
name for backup

Example:
® xvesa=800x600x32

10.35. mydata - use a different name for
backup

By default, the backup is named mydata.tgz. Using this boot code
you can use a different name.

Example:
® mydaa=command.com

10.36. blacklist - blacklist modules

Occasionally a module for your hardwareis |oaded, but you don't
want it to load. In these cases, you can blacklist it.

One prominent example is the PC spegker. Some people love the

beeps, others hatethem To blacklist multiple modules, you can use
either multiple blacklist bootcodes, or give a comma-separated list

Examples:
® blacklist=pcspkr
® blacklist=pcspkr,e100
10.37. multivt - setup multiple consoles
By default, the system saves RAM by only setting up one console.

Using this option, the more conmon anmount of six consoles gets
setup.

59

multivt - setup
multiple consoles

Example:
® multivt

Part II. Advanced use

Chapter 11. Remastering

Remestering is the process of editing the initrd image. Produdng a
new SO imageis not necessary, but is often useful if you intend to
bum theresult to a CD or to test easily in a virtual machine.

This chapter covers the process of remestering manually. There
exists a hel per extension, EZRemaster, but that one will not be
covered here

Y ou typically only need to remester if you need to edit any of the
early boot scripts, or if intending to create a stand-alone imege for
a spedific deployment that runs entirdly in RAM. As updating a
remestered image to a newer Core version can bea hassle, a method
for that is covered in the next chapter.

11.1. Prerequisites

Y ou need a Linux distribution with the required programs available:
cpio, tar, gzip, advdef, and mkisofs. This need not be Tiny Core
itsdf, but remastering inside Tiny Coreis the most tested option.

For remastering on Core, install the extensions advcomp.tcz and
optionally mkisofs-tools.tcz if creating an SO image

11.2. Unpacking

First, we'll extract the kemd and initrd image from the latest Core
ISO.

$ sudo mkdir /mnt/tmp

$ sudo mount TinyCore-current.iso /mnt/tmp -o loop,ro
$ cd /mnt/tmp

$ cp boot/vmlinuz boot/tinycore.gz /tmp

$ sudo umount /mnt/tmp

If you aregoing to areate an 1SO image, instead of copying only
thesetwo files, copy everything:

63

Packing

sudo mkdir /mnt/tmp

sudo mount TinyCore-current.iso /mnt/tmp -o loop,ro
cp -a /mnt/tmp/boot /tmp

mv /tmp/boot/tinycore.gz /tmp

sudo umount /mnt/tmp

A A A A A

With thefiles copied into /tmp, we'll be unpacking theinitrd image
next

$ sudo mkdir /tmp/extract
$ cd /tmp/extract
$ zcat /tmp/tinycore.gz | sudo cpio -i -H newc -d

Please note the use of sudo where needed; root rights are required
to preserve pemissions correctly. If your host distribution sets non-
default flags for /tmp, you may aso need to change the pemissions
of the /tmp/extract directory - it needs to be root:root 755 in order
to produce a bootableimage.

Now, with the initrd image | aid bare before our eyes, fed freeto do
any edits, additions, or removals needed.

11.3. Packing

With the modifications done, these steps create the initrd image
from the extracted directory tree:

cd /tmp/extract

sudo find | sudo cpio -o -H newc | \
gzip -2 > ../tinycore.gz

cd /tmp

advdef -z4 tinycore.gz

A A

Theimageis compressed using gzip's level 2 to savetime.
Advdef is used to re.compress theimage with aslightly better
implementation, produdng a smd ler image that is faster to boot.

Creating an 1SO image

11.4. Creating an ISO image

Thefollowing commands create a bootable |SO imege, ready to be
burmed or booted in a virtud mechine

$ cd /tmp

$ mv tinycore.gz boot

$ mkdir newiso

$ mv boot newiso

$ mkisofs -1 -J -r -V TC-custom -no-emul-boot \
-boot-load-size 4 \

-boot-info-table -b boot/isolinux/isolinux.bin \

-c boot/isolinux/boot.cat -o TC-remastered.iso newiso

Optionally clean-up the temp dir
$ rm -rf newiso

65

Chapter 12. Remastering
with a separate image

In order to better keep track of which files are modified or added,
and to enable easier updating to a newer Core, it's recommended to
use the method outlined in this chapter.

However, if you nead to remove something fromthe image, for
exampleto fitin tight memory constraints, this method will not
work. Itisonly suitable for adding or changing files.

There are specific characteristics in thekemd’ s cpio loader that
aren't present in the userspace utility: it allows you to load several
images, either separatdy or concatenated together, and if the same
file exists in more than one image, the later version overwrites the
former.

This dlows us to keep dl our changes in aseparate initrd imege,
meking it easy to update to a newer Core version (literdly only
replacing core.gz and checking our modifications are up to date).

For the sake of an example, |et’s areate a separate image that
changes the login message.

12.1. Practice image

Thelogin message is stored in /etc/issue. Therefore we need to
create an image that contains the exact same path, with the contents
we want to see.

$ cd /tmp

$ sudo mkdir -p ex/etc
$ echo "I believe!" | sudo tee ex/etc/issue

Now our new directory tree should look like this:

67

Booting with more
than one initrd

ex/
T-- etc/
‘-- issue

1 directory, 1 file

Le’s pack it up like we would a normal remaster.

$ cd /tmp/ex

$ sudo find | sudo cpio -0 -H newc | \
gzip 2 > ../myimg.gz

$ advdef -z4 ../myimg.gz

To see whether the image works, boot it as outlined in the next
section, and log out. Y our new login text should be visible above the

login prompt.
12.2. Booting with more than one initrd

Many bootloaders allow you to submit more than one image
separdely. For example, the syslinux family uses this syntax:

initrd=/boot/core.gz,/boot/myimg.gz

That is, you havethe new imagein the same directory as the main
image, and place it after the original one, separated by acomna.

If using a bootl oader that only supports one initrd (GRUB legacy,
some of the DOS-based loaders, etc), you will need to catthe
inmages together. This process is not easily reversible in userspace,
so keep a separated copy of your new image around to do updates
with.

$ cat core.gz myimg.gz > new.gz

Chapter 13. Including
extensions in the ISO

This chapter will introduce the method of including extensions inan
I1SO image

TheTiny Coreand Core Plus 1SOs are exanmples of this method - a
bare Core plus extensions on the disc.

Sincea CD is read-only, most of the operations you can paformon
anormal tee directory cannot be done. For this reason, the directory
is renamed ode when included inan SO inmage.

The specifics of directory structure are exadlly the same as for the
tce directory.

13.1. Example: including nano

Sincethis example invol ves downl oading dependencies, it's essiest
to do on Coreitsdf. Install advconp.tcz and mkisofs-tools.tcz for
the required prograns.

First, copy the contents of the source |SO image

sudo mkdir /mnt/tmp

sudo mount TinyCore-current.iso /mnt/tmp -o loop,ro
cp -a /mnt/tmp /tmp/newiso

sudo umount /mnt/tmp

A A A A

Download nano into your tce directory:

$ tce-load -w nano

Copy nano and its dependencies to the cde directory, to be placed in
thenew 1SO image:

69

Example

including nano

$ cd /etc/sysconfig/tcedir/optional

$ tce-fetch nano.tcz.tree

$ for file in ‘cat nano.tcz.tree’; do

$ cp ${file}* /tmp/newiso/cde/optional
$ done

Add it to onboot.lst, so it gets installed on boot.
$ echo nano.tcz >> /tmp/newiso/cde/onboot. st

Cregte the | SO image, ready to be bumed or booted in a virtud
mechine:

$ cd /tmp
$ mkisofs -1 -J -r -V TC-custom -no-emul-boot \
-boot-load-size 4 \
-boot-info-table -b boot/isolinux/isolinux.bin \
-c boot/isolinux/boot.cat -o TC-remastered.iso newiso
$ rm -rf newiso

When you boot this new 1SO image, the nano editor will be
available for use (installed on boot fromthe image).

In the above example, nano is mounted fromthe CD,
meaning you can't g ect the CD while running. The

v norma mechanismfor |oading the extensions to RAM
can be used if this is desired: cregte an empty filecalled
copy2fs.flg in the cde directory.

70

Chapter 14. Creating a
personal (data) extension

When you have a set of unchanging data that needs to be stored
outside your home directory, it’'s recommended to create an
extension out of it rather than add it to the backup (whereit would
add to your boot and shutdown times).

The extension completdy mirrors the resulting file system tree,
so that if we want to see /usr/share/mydir, our extension should
contain usr/share/mydir.

For an example, say you downloaded an icon theme from gnome-
look.org. |con themes should be instdled to /usr/share/icons/name
for a systemwide insta lation. It's agreat exanple of this type of
data: unchanging, and needs to be outside the home directory.

First, we'll cregte the tree we want to see insidethe extension, ina
temporary directory. We'll do this as root, so that systemdirectories
get the proper permissions and ownership.

sudo su

cd /tmp

mkdir myextension

cd myextension

mkdir -p usr/share/icons

A A OB A A

Then, assuming theicon theme was unpacked to /tmp/gold
(containing /tmp/gold/16x16 and other icon directories), move it to
the proper place:

$ sudo su # Still as root
$ mv /tmp/gold /tmp/myextension/usr/share/icons

Now we'reready to create an extension out of this directory tree. If
you haven't already loaded the squashfs-tools-4.x.tcz extension, do
SO NOW.

71

$ cd /tmp
$ mksquashfs myextension myicons.tcz

Our mksquashfs has been changed to use custom
SOTE Gefaults. I using a ksquashfs binary from elsewhere,
' you need to add the options -b 4k -no-xattrs for the
sameresult.

Y our personal extension is now ready. All ittakes now is to nove
itto your tce directory, and to set it as OnBoot (if you need it every
boot).

$ cd /tmp
$ mv -v myicons.tcz /etc/sysconfig/tcedir/optional

Adding it to onboot.lst. Skip if you want it
OnDemand or not in any list at all

(manual loading only)

$ cd /etc/sysconfig/tcedir

$ echo myicons.tcz >> onboot.lst

Y ou caninstall it right now with tce-load -i myicons, or you can
reboot to test whether it gets properly loaded on boot. Oncethe
extension is loaded, you should see the icons in /usr/share/icons,
and be ableto use themin apps.

72

Chapter 15. Creating an
extension

Creging an extension with binaries is no different fromone
containing mere data, likein the previous chepter. This chapter will
mainly focus on the speifics of binaries, following the process from
conmpiling to organizing them according to conventions.

By way of example we |l be compiling less, acommand-line
docurment viewer. The process is no different for graphical
applicaions, no actions are needed to make them have proper icons
or menu items. Core follows the common FreeDesktop icon and
menu standards.

To stat, instd| the main devd opment extension, compiletc.tcz.
This meta-extension will install the GCC toolchain and system
headers for you, corresponding to build-essential on Debian
systems, and other names on other distributions.

15.1. Building less

L ess uses the common A utotool s build framework: ./configure
&& make && make instal . Other build systerms (cmeke, custom
mekefiles, and so on) will require different steps; consult the
progrant s install documentation if unsure.

As less needs ncurses to build, install itand its headers, ncurses-
dev.tcz. We assume you have the | atest |ess source downloaded and

unpacked to Amp.

At this point, you would set the environment variables
NOTE CFLAGS, CXXFLAGS and LDFLAGS. These variables
o affect the compiler and linker optimization, and vary by
thetarget.

73

Credting the extension
directory tree

If building an extension for yourself, you may use any
values; if building for the repository, see the wiki for the
| atest recommended va ues for your architecture. It's OK
to leave them empty for your own extensions.

cd /tmp
cd less-458 # Latest version at the time

Check the default options are OK
./configure --help | more

$
$
#
$
They are OK for less. Go with the defaults.
$./configure
#
#
#
#

The process should run without errors.
If not, google for the error message.

Next, build less:
$ make

15.2. Creating the extension directory
tree

While still in the less-458 directory, we' |l use the Autotools support
for instaling to a destination directory, not to the running system
(which would belost on reboot).

Again as root, so that system directory

permissions and ownership is correct.
$ sudo make DESTDIR=/tmp/destless install

Taking alook in this temporary directory, thetreelooks likethis:

74

Packing up

usr/
"-- local/
|-- bin/
| |-- less*
| | -- lessecho*
| "-- lesskey*
"-- share/
"-- man/
T-- manl/
|-- less.1
| -- lessecho.1
"-- lesskey.1l

6 directories, 6 files

Wesee that | ess instaled three binaries, and three manual pages,
all in the proper locations. As network access is quite common, it's
conventiond to remove manual pages and other documentation
from extensions, or to have them in a separate -doc extension, so
that the main extension can besmaller.

Inthis case, e’ s remove the man pages:

$ cd /tmp/destless
$ sudo rm -rf usr/local/share

It's also recommended to remove debugging symbols fromthe
binaries, likewise for smaller size:

$ cd /tmp/destless/usr/local/bin
$ sudo strip -g *

15.3. Packing up
Credting a squashfs archive fromthe ready-made directory treeis
the same as with a data-only extension: one simple invocation.

$ cd /tmp
$ mksquashfs destless myless.tcz

75

Chapter 16. Extension install
scripts

Extensions may optionally indude a script to be run after they’re
loaded. This is often used to make a default configuration file
writable, or to work around some application that doesn’t recognize
its pluginsif they are symlinks instead of real files.

Theseinstall scripts live in the fusr/local/tce.installed directory.
They are named after the extension’s file name, so for myext-
foo.tcz the instal | saript needs to be named myext-foo.

Install scripts run as root

Theinstall scripts should be owned by tc:staff and have executable
permissions. The tce.installed directory should be owned by
root:staff and have 775 permissions.

Faulty permissions for the tce.installed directory may
é_ break extension loading.

16.1. Example: nano

For an example, let’s take alook at what kind of install saript would
be neaded for the nano editor.

Nano ships with a systemrwide default configuration file. If the
user loads the nano extension to RAM, thefilewill bewritable, and
nothing needs to be done; but what about the other case, default
mounting?

In that case, the file would bea symlink to a read-only file, not
what we want. So inthe install script, we need to detect if the
configuration fileis a symlink, and if so, copy thered fileinits
place.

77

Example: nano

As theinsta| scripts are run before the backup is restored, we never
overwrite any custom configuration the user has done

#!/bin/sh
CONFDIR=/usr/local/etc

[-h $CONFDIR/nanorc] && \
rm -f $CONFDIR/nanorc && \
cp -a /tmp/tcloop/nano/$CONFDIR/nanorc \
$CONFDIR

If the config file is a symlink,
remove it, and copy the real file
in its place.

HoH K HH

This is a no-op on copy2fs installs.

78

Chapter 17. Creating custom
boot codes

Often it can be useful to set up custom boot codes to handle
different cases. For example, a rescue USB stick might have a boot
menu with severd options: text boot, GUI boot, stress test...

The contents of the boot command line arevisiblein /proc/cmdline.
Our shdl fundions colledtion, tc-functions, contains helper
functions you can use in your scripts.

Example saipt, perhaps called fromuser tc's .profile:

#!/bin/sh
Include the helper functions
. /etc/init.d/tc-functions

checkbootparam checks for the presence

getbootparam gets the argument from "param=arg"

if $(checkbootparam stress); then
type=$(getbootparam stresstype)

case $type in
cpu)
CPU testing here
ram)
RAM testing

g
echo Unknown test $type
sleep 20
esac
fi

If the boot code "stress” is present, the scri pt checks another boot
code, "stresstype=foo", for which type of stress test to run.

79

. This is aslightly contrived exampleto show the likely
:‘,91#! flow control.

In a real-life stress test bootcode, you wouldn’t waste
space by using two separate boot codes for the same
thing, but instead would check for the presence of the
same boot code

If using isolinux with gfxboot, the boot menu might look likethis:

Part III. Core internals

Chapter 18. The TCZ format

If one had to put it in asingle sentence TCZ could be described as
"aloop-mounted squashfs 4.x archive, with specified parameters,
usually symiinked into the main file system".

With a mounted archive, we get to keep the bulk on the
“9TE gorage media, conpressed and read-only (safe from
7 theusud methods of corruption). Contrasting this to the
mgority of distros, which unpack the files but usually
can't detect a change or corruption in afile the TCZ
method is morefail-safe.

That however only scaratches the surface. In this chapter, we'll be
looking to the design dedsions behind it, and the gory details to its
inner workings. The accompanying files are covered dsewhere we
shall only focus on TCZ here.

Starting from the instal aion method, the archive can either be
mounted and symlinked, or its contents can be copied to thefile
system (usually RAM) for faster execution. The mount-and-symlink
method is necessary in order to get the files in expected locations,
whilestill keeping the data compressed and on the storage media,
not extracted in RAM. Thedefault is to mount.

It's often questioned why Core eschews the many union file
systems, unlike most other live distributions. The reason for that
is twofold: first, they tend to be unstable (buggy). There arequite
a lot of mysterious crashes, and worse, disappearing files reported
on the 'net for the various union file systers. Secondly, the system
requirements for such a setup are higher. It would require more
RAM to store the setup, and it would have more overhead per file
access.

Why squashfs then, one might ask? The various mountable formats
were compared in the earlier days, during the 1.x and 2.x time
frame. Here are the various pros and cons:

83

Squashfs parameters

Cramfs
® limited cgpacity, no time stamps, limited uid support
® supported in kemel

Zisofs

® amnimumsizeof 512K B - overhead for many smaller
extensions

® supported in kemel

Mounting tar/zip archives via FUSE
® the overhead of FUSE

Squashfs came with full support for file attributes, good
compression, and fully in-kemd support with good performance.
After afew tries it was an easy decision.

18.1. Squashfs parameters

At thetime, only gzip compression was supported, but sincethen
the new options of LZO and XZ have been eva uated.

LZO aeated digntly bigger extensions, but its speed advantage
was not seen in our use- the CPU could keep up fine with gzip
conmpression, bottle-necked by the hard drive reading speed.

XZ, whilenicdy improving the compression raio, comes with
the downsides of LZMA: for each extension, it neads to keep the
full dicionary in RAM. This means up to 1 MB extra RAM use
per extension, depending on the exact settings used when creating
the extension. The decompression was also measurably slower
compared to gzip, no longer being ableto be masked by thelO
speed.

84

What's inside?

Therefore, our original decision to go with gzip conpression for
squashfs archives was still the correct one.

A run of similar tests was made to find the ideal block size for
squashfs. Whilethe larger blocks i mproved compression, squashfs
keeps afew blocks cached in RAM per mount, so the compression
had to be carefully balanced with the RAM requirement.

Unsurprisingly, the smallest block size, 4 KB, showed the best
RAM behavior. The impact to compression and by proxy the
reading speed was small enough, that this size was settied for.
Current versions of Core refuse to |oad extensions created with

other parameters.
18.2. What's inside?

The contents of a TCZ extension are nothing magic: it's thedirect
file system tree that can be found when you instal | an applicaion or
library. Let’s takea look a Ixterminal .tcz.

usr/local/bin/1xterminal
usr/local/share/applications/Ixterminal.desktop
usr/local/share/1xterminal/\lxterminal-preferences.ui
usr/local/share/1lxterminal/lxterminal. conf
usr/local/share/pixmaps/lxterminal.png

It contains the main binary, Ixtemind ; the FreeDesktop

standard .desktop file, specifying its icon and placementin any
menus; the program's icon; and the program's private data. Nothing
extra.

Theleading directories are there by necessity, but since

HOTE they're uninteresting in this context, we skip them here.

This is what you would find under fimp/somewhere after doing a
"meke install DESTDIR=/tnmp/somewhere’. Often documentation
and devel opment headers are further split to other extensions, for
lower overhead to those who only want to use the extension.

85

What's inside?

Using the regular paths, with writable directories, means that most
applications "just work".

There's power insimplicity.

Chapter 19. The boot
process

At thehigh level, common distros' boot process consists of two
parts: theinitial RAM disk |oads the storage drivers and finds the
disk where the rest is stored; then the file systemon the disk takes
over, loading your services and gpplications.

Coreis different, in that it never leaves the first stage. Wefully
runintheinitid RAM disk, never leaving for aspinning disk (or a
network mount, etc). There are other methods of "runningin RAM*
too, such as those used by Puppy, Knoppix, and DSL, which all doa
variation of the usual method - they create a new, bigger RAM areg,
and move to it, |etting the new part finish the boot.

While the newer technology is called initial RAM FS
NOTE (initranfs), notinitial RAM disk (initrd), the terms will
be used interchangeably here, always refaring to the
newer method.

Console

/init } init } rcS } tC»config] }
bootsync.sh } bootlocal.sh ’ root's login } tc's login

19.1. The first step: /init

Once the kemd has booted itsalf and unpacked our initrants
archive, it hands off control to a specific file, /init. This can beany
executable, inour caseitis a short shell script

87

Real Boot: init

Thetasks given for this very first program are only those not doable
later as easily. |t changes the allocated RAM space for /, optiondly
changing some options for init (a different program), and if a
fallback setup is desired, does an old-style move of allocating new
RAM space, copying the data there, and moving to it.

As this 16-line saript finishes, it gives off control to thereal init
This is the program that controls boot, shutdown, and reboot. It's
the one that tekes care of all your dead zombies, and listens for the
user’s ctrl-alt-dd key-presses. It sets up the nunber of teminds
reguested, and fires up a login prompt program on each. Comnon
options here are SysVinit, upstart, systend, and busybox init. Core
uses busybox init.

19.2. Real Boot: init

Busybox initis a BSD-style one, meaning it does not have
runlevels, but runs one script on boot. At this point it does very
little, giving control to our main boot script, tc-config (via rcS).

19.3. Bootstrap: rcS

ThercS saript sets up some system mount points, and passes control
to tc-config.

Thefirst few initidization lines of tc-config were separated into rcS,
to ease remester maintenance. As one exanple, the Plymouth boot
splash can be started from there.

19.4. Main boot: tc-config

Thetc-config boot script is responsible for bringing up your
hardware, acting on most boot codes, and meking it possible for
extensions to be loaded.

Main boot: tc-config

The order of events inside this script:

1
2.

3.

Check boot options

Fire up udev, start cold-plugging devices

Wait for slow USB devices if requested

Setup compressed swap in RAM, unless requested not to

Scan the available partitions, and creste /etc/fstab with the
results

Start up the systemlogger if requested
Setup language, timezone, clodk, and hostname
Setup the requested usemame

If an extension server was requested over AoE, NBD, NFS,
TFTP, or HTTP, handle it

10. If a virtual (loop) drive was requested, mount it

11. Setup persistent horme and/or opt, if requested

12. Load laptop modules if requested

13. Endbleswap if possible

14. Fire up extension loading

15. Fire up backup restore

16. Start bootsync.sh

After this sequence of events, the control moves to traditiond
userspace

Bootsync.sh

19.5. Bootsync.sh

This is the entry point for dl itens you need to run on boot, while
the boot waits for them to complete. If you need network access
|ater, this might be a good place to wait for the network to come up.

This script launches bootiocal .sh, backgrounded.
19.6. Bootlocal.sh

This is the entry point for dl iters that don’t need to be waited for.
This may indude loading some non-essentid module (ISA sound
cards, for example), or starting some server.

19.7. Root’s login

Once bootsync.sh is complete (and while bootl oca .sh happily does
its own thing in the background, on another CPU core if thereis
one), init regains control.

As the boot is now conplete frominit’s point of view, itfeds safe
to launch up dl requested terminals. By default, thisis only thefirst
termind, but with the multivt bootcode you can request six.

Thefirst tamind is configured to do an autometic login to root,
only once. If you log out, this teemina will present alogin prompt.

Root’s login saript is setup to do one of two things: if autormetic
login was disabled, it logs out, and otherwise, it passes the control
up to our regular user, named tc by default.

19.8. Regular user

Now we're more in the regular distro territory: the norma user’s
login script does nothing out of the ordinary. If an X serveris
avalable, and a text-only boot was not requested, X is started.

%0

The X Window System

19.9. The X Window System

The shipped .xsession file sets up the default background, starts
any X-dependant programs you' ve configured, and starts up the
configured window manager.

These parts only gpply if you have the GUI extensions |oaded
(Xlibs, Xprogs, an X server, and a window manager). A conmand-
line-only boot ends at user tc’'s login.

Graphical

Xsession } X.d

19.10. .X.d

This is thefind part of the boot process. After starting up the
window manager, the .xsession script sources and executes every
file found in this directory (~/.X.d).

This is used to start up any programs that need X to run. For
example if you want to start a browser automatically on every boot,
this is your location.

91

Chapter 20. The tce
directory structure

L ooking inside the tce directory, there are a variety of files: control
filesin plain text, and extensions as conmpressed archives. In this
chapter we'll introduce the meaning and format of these control
files.

Here's atypicd tce directory:

firstrun
onboot.lst
ondemand/
optional/
xwbar.lst

./ondemand:
ace-of-penguins

./optional:
ace-of-penguins.tcz
ace-of-penguins.tcz.md5. txt
nano.tcz

nano.tcz.dep
nano.tcz.md5. txt
ncurses-common.tcz
ncurses-common.tcz.md5. txt
ncurses.tcz
ncurses.tcz.dep
ncurses.tcz.md5. txt
upgrade/

./optional/upgrade:
ncurses.tcz
ncurses.tcz.dep
ncurses.tcz.md5. txt

93

Firstrun

Starting from the top level, we have two directories: ondemand/
for the ondemand scaripts (they install the extension, and optionally
launch the program if one could be identified), and optional/ for
keeping the extensions.

Theoptional/upgrade/ is a temporary directory, meaning these
extension updates were downl oaded this session, and will be applied
on reboot

This leaves us with the top-leve plain text files.

20.1. Firstrun

This is an empty marker, whose existence means that the first-
run did og has been run and shouldn’t be run again. The first-run
didog is run on thelaunch of Apps, asking whether you'd like to
autormaticaly choose the best mirror available

Themirror chooser utility can be later on launched from the menu,
if needed.

20.2. Onboot.Ist

This is the plain text file containing a list of all extensions that
should be loaded on boot. The files should be listed without paths,
and are looked for only in the optional/ directory.

This file may be managed via Apps or via your favorite text editor.
Example onboot.|st file:

nano.tcz
ace-of-penguins.tcz

20.3. Xwbar.lst

This file is formatted according to the wbar config fileformat. It
lists the blocks that should not be ind uded in whar, the zooming
quick-launch bar induded by default

A

Ondemend scripts

Dueto the formdt, it's prefarred to edit this file viathe tc-wbarconf
utility, but hand-crafted edits are possible.

Example xwbar.|stfile:

i: /usr/local/share/pixmaps/exit.png
t: Exit
Cc: exec exittc

20.4. Ondemand scripts

If you insta| an extension as OnDemand, a script will be generated
for it under the ondemand/ directory. If the extension can be
detected as containing a single program, the script will dso launch
the program; if not, it will merdy load the extension when called.

If the extension is detected as containing asingle icon for thesingle
program, this icon will copied to the ondemand/ directory, and will
be shown inwbar just like if the programwere insta led on boot.
Upon clicking this icon, the generated saript is called, and theicon
is removed, replaced by the gpplication’s real icon.

These saripts areincluded in the window manager’ s menu whether
or not they contain an icon or a program.

Exampl e ondemend script:

#!/bin/sh
ondemand -e nano.tcz

Chapter 21. Accompanying
extension files

Alongside atypical extension there are a set of meta-datafiles.
Unlike the popular deb and rpm formets, the meta-datais not

kept inside the archive itsalf. This allows meta-data updates
without changing the main archive, which may be severd hundred
megabytes large.

While extension updates do take advantage of delta downloads
viathe zsync program, the amount of data transferred would still
be several times larger if the meta-data weare induded inthe main
extension archive.

The accompanying files are:

® dep: direct dependencies

® info: size, license, author, updates, and usage informetion
® list filelist

® md5.txt: checksum

® tree: recursive list of dependencies

® zsync: used for delta updates

21.1. Dep files

Theseare plain text files listing the direct dependencies for the
extension. As dependency resolution is recursive, these extensions
may have dependendies of thar own, and so the .dep files are
usually quitesmall.

nano.tcz.dep:

ncurses.tcz

97

Info files

21.2. Info files

Modded after the .Ismformat used in old software archives, the
info file identifies the extension and its main properties: size,
description, creator, license, and so on.

Often the conments field includes usage instructions specific to
Core, and the change-log field may include required actions for the
update, so it's advised to read the info filefor any extension you

instd | /update

nano.tcz.info:

Title:
Description:
Version:
Author:
Original-site:

Copying-policy:

Size:
Extension by:
Tags:
Comments:

Change-log:

Current:

nano.tcz

Nano editor

2.2.6

Various

http://www.nano-editor.org/

GPL

88K

Curaga

Nano editor

The most essential component of any
unix system, and my personal favourite
editor: Nano!

Has most advanced options enabled,
color syntax highlighting, multibuffer,
suspend etc.

2008/07/05 - First version
2008/12/09 - Update to 2.0.9,

this time in /usr/local
2009/10/05 - Removed user.tar.gz
2011/05/25 - Update to 2.2.6

21.3. List files

This is afree-formlist of files induded in the extension. |t can be
created using find, unsquashfs, or other tools.

98

Md5 files

nano.tcz.list:

usr/local/bin/nano
usr/local/bin/rnano
usr/local/etc/nanorc
usr/local/etc/nanorc.sample
usr/local/share/nano/asm.nanorc
usr/local/share/nano/c.nanorc
usr/local/share/nano/groff.nanorc
usr/local/share/nano/html.nanorc
usr/local/share/nano/java.nanorc
usr/local/share/nano/man.nanorc
usr/local/share/nano/mutt.nanorc
usr/local/share/nano/nanorc.nanorc
usr/local/share/nano/patch.nanorc
usr/local/share/nano/perl.nanorc
usr/local/share/nano/pov.nanorc
usr/local/share/nano/python.nanorc
usr/local/share/nano/ruby.nanorc
usr/local/share/nano/sh.nanorc
usr/local/share/nano/tex.nanorc
usr/local/tce.installed/nano

21.4. Md5 files

These are checksumfiles, obtained directly from the mdSsum
utility.

nano.tcz.nmdS.txt:

02e231701c2d272f81cda33fléeacell nano.tcz

21.5. Tree files

These are files generated by the server, containing a flatened
listing of all dependencies for the extension. They areavailable for
convenience, and used for functions like the size tab in Apps, or for
copying an extension and d| its dependencies.

nano.tcz.tree

Zsync files

nano.tcz
ncurses.tcz
ncurses-common.tcz

21.6. Zsync files

Theseare binary files generated by the zsyncmake utility. They
are hosted server-side to enable ddta downloads for faster, lower-
bandwi dth extension updates.

Wealso host zsync files for the main SO imeges, enabling you to
download newer versions rather quickly and cheaply.

100

Part IV. Projects

Chapter 22. Simple Web
server

By Luiz Fernando Estevarengo AKA Zendrael

Building a simple web server is really easy with Core and Busybox
HTTPD. This server is tiny and fast, although it does not run some
server-side pages, you can run CGI scripts - you can even writea
shdl script to actlikea CGl.

Install the busybox-htipd.tez extension via A pps or by the command
line, OnBoot so that it's loaded every time the computer boots up.
To stat it each boot, indude this linein /opt/bootlocal.sh:

/usr/local/httpd/sbin/httpd -p 85 \
-h /home/tc/public_html -u tc:staff

WEé re specifying that the server will run on port 85, will load files
stored in the public_htm folder under my user, and will run as the
user tc with group staff. Thisis a conf-less method so you don't
need a config file

By default, Busybox-HTTPD doesn't list files in directories, it will
always look for an index.html file If you prefer to have adirectory
listing feature, you must add a CGI scriptfor it, dso provided by the
extension:
$ mkdir -p /home/tc/public html/cgi-bin
$ cp /usr/local/httpd/index.cgi \

/home/tc/public html/cgi-bin

Make sure it has proper permissions
$ chmod 755 /home/tc/public html/cgi-bin/index.cgi

A quick reboot |ater, it's ready to go, serving files over the web!

103

Custom CGI exanple

22.1. Custom CGI example

If you want to control the systemvia a web browser, or to read
statistics for example, you can write custom CGlI saripts in the shell.

Here'sahdlo world CGI shdll saript:

#!/bin/sh
echo -e "Content-type: text/html\r\n\r\n"
echo "<hl>Hello world!</h1>"

When placed in the cgi-bin directory, named as hello.sh, and given
executable pamission, you can point your browser to localhost/cgi-
birvhello.sh to test it.

104

Chapter 23. Automated
network installer

In this chapter, we'll build a PX E-bootable image that partitions and
formats the local disk, installs a bootloader, and unpacks a preset
tarball to the new partition.

It may be used for quick mass instalaions, or booted froma CD/
USB as a conventional autormated installer.

Wha theimege instdls is not spedfied here; it nead not be Core.

23.1. Start files

We need to download the kemel and main initrd, vmlinuz and
coregz, fromany mirror. Theinstaler logic will beplaced inan
additiond initrd.

This procedure may be performed fromany linux distribution; the
downl oaded extension has no dependencies, so itis easy to do with
a web browser if necessary.

Download the syslinux extension:

$ tce-load -w syslinux

23.2. The installer script

WE Il includean instdler saript in the new initrd, and call itfrom
bootsync.sh, so that its output is visible on screen.

105

Theinstaller script

$ sudo su

When editing the main system files, it's best to be
root, so that permissions and ownership are correct.
$ cd /tmp

$ mkdir -p initrd/opt

$ cp /opt/bootsync.sh initrd/opt

$ editor initrd/opt/bootsync.sh

Add a cdl to your saript to the end, making sure the network is up
beforestarting it:

count=0

echo -n Waiting for the network...
while ["$count" -1t 60]; do

ifconfig eth® | grep -q inet && break
sleep 1

count=$((count + 1))

echo -n .

done

/opt/installer.sh

Crege the instaler saript, marking it as executable:

H# H o

A A A A

sudo su
When editing the main system files, it's best to be
root, so that permissions and ownership are correct.

cd /tmp/initrd/opt
touch installer.sh
chmod a+x installer.sh
editor installer.sh

Here's the exampl e contents:

106

Theinstaller script

#!/bin/sh
TARGET=/dev/sda

out() {
Sync; sync
poweroff

}

Check there is a disk

fdisk -1 $TARGET 2>&1 | grep -q bytes

["$?" -ne 0] && echo "No disk found" && \
sleep 10 && out

Zero out the partition table
dd if=/dev/zero of=$TARGET bs=512 count=1

Partition it to two

Swap is set up at 256 Mb, rest for ext4
fdisk $TARGET << EOF

w
EOF

mkswap ${TARGET}1
mkfs.ext4 ${TARGET}2

cat /usr/local/share/syslinux/mbr.bin > $TARGET

107

Packing up & testing

Mount it, grab the tarball
mkdir /mnt/target
mount ${TARGET}2 /mnt/target

cd /mnt/target

wget http://my-url.com/files.tgz
tar xvf files.tgz

rm files.tgz

Install extlinux
mkdir -p boot/extlinux
extlinux -i /mnt/target/boot/extlinux

cd /
umount /mnt/target

Done!

clear

echo Success.
sleep 5

out

WEéE | dso need to unpack the syslinux extension to this new initrd.
To do thison Core, insta| the squashfs-tools-4.x extension.

$ sudo su

$ cd /tmp

$ unsquashfs syslinux.tcz

$ cp -a squashfs-root/* initrd

23.3. Packing up &testing

Le’s pack our new initrd image up:

$ cd /tmp/initrd

$ sudo find | sudo cpio -0 -H newc | \
gzip 2 > ../myimg.gz

$ advdef -z4 ../myimg.gz

Try booting the new image in a virtud machinewith a hard drive
attached - the whole process should be quite fast

108

Chapter 24. Private cloud

Cloud is such a buzzword. It means everything and nothing.

For the purposes of this chapter, it means you set upanold
computer a home, sharing your files, letting you access them from
anywhere, including your phone.

Sincefileserving tekes litde CPU, any old clunker ought to be of
use; if the power demands metter, we reconmend re-purposing a
thin client or alaptop, as they often use only 15-25W.

Most file sharing protocols are insecure; it's not recommended to
expose SMB or NFS to theintamnet. We'll be setting up two servers:
busybox httpd giving passworded read-only access to our files, and
a SSH server giving secure read-write access.

We assume you haveinstalled Coreto the computer, and have
persistence set up. For this exanple, we'll be sharing the files on
sdal/files.

It's assumed there’s a NAT router between the box and the intemet;
itwill handle port forwarding and firewalling. It's assumed the data
disk is thesame as where Coreis instdled; otherwise it needs to be
mounted in bootlocal.sh.

24.1. SSH

For SSH, we have the choice of using dropbear, or the OpenSSH
server. |If SFTP isrequired, you'll need OpenSSH; for this exanmple,
we'll assume shell and scp are enough, and will pick dropbear.
Install your selected SSH server extension, OnBoot.

For fileaccess, we'll create a separate user that has no other rights.
His home directory shal bethe files directory.

109

HTTPD

$ sudo adduser -H -h /mnt/sdal/files johndoe
-H: don't create directory
-h: path to home directory

We need to give our new user write access to files
$ sudo chown -R johndoe /mnt/sdal/files

To start dropbear on boot, add the following lineto /opt/
bootlocal.sh:

/etc/init.d/dropbear start

To saveour new user, their password, and the SSH host keys, add
theselines to the backup in /opt/.filetool 1st:

etc/passwd
etc/shadow

etc/group
etc/dropbear

Generate the host keys now, and run a backup:

$ sudo /etc/init.d/dropbear start
$ backup

24.2. HI'TPD

Thereis a pre-compiled extension for busybox htipd, busybox-
httpd.tcz. If you need to customize it, busybox is faifly easy to
conpile

Start by creating the config filefor it:

$ sudo su
$ echo "/:foo:bar" > /mnt/sdal/httpd.conf

This file disalows all access without the given usemame (foo) and
password (bar).

To start it on boot, add the following to /opt/bootlocal.sh:

110

Connections, ports

/usr/local/httpd/sbin/httpd -u nobody:nogroup \
-r "Private." -c /mnt/sdal/httpd.conf \
-h /mnt/sdal/files

As busybox httpd doesn't support file listings natively, it comes
with aCGI programto do it instead. Copy it to the proper place:

$ mkdir /mnt/sdal/files/cgi-bin
$ cp /usr/local/httpd/index.cgi /mnt/sdal/files/cgi-bin

Make sure it has proper permissions
$ chmod 755 /mnt/sdal/files/cgi-bin/index.cgi

24.3. Connections, ports

Many routers have a DynDNS (or other such service) client built-in.
Theseservices give you a DNS address even if your IP is not stable,
as it often is notin home connections.

As your NAT router handles port forwarding, you get to decide
which ports to redirect to your cloud's ports 22 (SSH) and 80
(HTTP). It's not recommended to usethe port 22 publidy, asthat’'s
painting a target on your door - there are autonated bots trying to
attack every server with port 22 open. Even though using a non-
standard SSH port is mere security by obscurity, it's not humans
that moveis intended to deter, but autoratic bots and scripts.

For the HTTP port, most phones |t you use a port other than 80, but
using a port other than the common ones (80, 443, or 8080) may be
blocked by some 3G networks.

24.4. Security considerations

HTTP and HTTP authentication is insecure. Anyone can snoop your
username, password, and data - don’t use a sensitive onefor these
credentials, or download sensitive files over the HT TP connection.

111

Find result

It's however a balance with usability. Most devices support
HTTP and HTTP authentication; SSH access can be considered
considerably more luxurious.

As the router is assumed to handle firewalling, no firewdl is
installed on the box in this example Adding one would be an
additiond defenselayer, but its advantage in practice would be
small in this scenario.

Using a heavier HT TP server would allow SSL connections, giving
slightly better protection for the read-only access. However SSH
with public key authenti cation is recommended for sensitive data

TheHTTP server is run as nobody, without any kind of write access
to the system. Along with the sinplicity of busybox, it's unlikely
for there to be a remote exploit for it. A chroot may be added on top
to isolate the server from the core systemy though the valuable data
would be inside the chroot.

HTTP server logging would be available by adding the -v -f
options to the start line, preventing the server from daenonizing
and requesting verbose output. Redirecting stdar to a file would
preserve the logs. Rememnrber in this case to have the httpd server be
thelast line in bootlocal .sh, as thelines after it wouldn’t execute.

24.5. Final result

Y ou have your own personal cloud hunming over there, giving
you access to your data all over the world. Sharing subfolders with
specific passwords, say holiday pictures to far-living family, is just
one config change away.

Assuming your end-device dlows it, you have secure upload,
download and shdll; otherwise, you have read-only HT TP access.

112

Find result

Therequired extensions +the CGI script total about 120kb of disk
space Both servers use about 500kb of RAM. The overhead over
Coreitsdf is small enough not to matter; if the computer has enough
RAM to runashdl, it can run this scenario. A Pentiumwith 32mb
of RAM would be adequate.

113

Chapter 25. A thin remote
desktop client

In this chapter, we'll build an SO imege that autormaticaly
launches a RDP session to a pre-determined target.

Overview of steps:

1. Grabthelatest TinyCore SO (X is needed)

2. Add the rdesktop extension and dependencies to thelSO

3. Make the boot wait for getting an | P address

4. Fire up rdesktop when the systemis up

Tq start with, download the latest TinyCorel SO from your d osest

mirTor.
25.1. Add the rdesktop extension and
dependencies to the ISO

In order to easily get the extensions we need, we'll be doing the
remester inside the fresh TinyCore SO we just downloaded. Start it
either ina virtual machine, or on red hardware

With our environment up, download the rdesktop and gconv
extensions:
$ tce-load -w rdesktop glibc gconv

The gconv extension contains the data files for converting text
between character sets; it's an optional dependency of rdesktop.
As we'rerunning in the cloud mode, al extensions will be kept
inRAM, in /tmp/tce. With a fresh image, only rdesktop and its
dependencies will bethere

115

Make the boot wait for
gedting an | P address

Let’s mount and copy thel SO we booted from:

The CD might already be mounted, but just in case:
$ sudo mount /dev/sr@
$ cp -a /mnt/sr@ /tmp/newiso

The copy might warm about not being ableto keep the file
ownership; thiswaming is harmless.

Copy rdesktop and its dependencies to the cde directory on the new
1SO:

$ cd /tmp/tce/optional
$ sudo cp * /tmp/newiso/cde/optional

Add it to onboot.lst, so it gets installed on boot.
$ chmod u+w /tmp/newiso/cde/onboot.lst

$ echo rdesktop.tcz >> /tmp/newiso/cde/onboot.1lst

$ echo glibc gconv.tcz >> /tmp/newiso/cde/onboot.lst

If you want to disable whar in the new image, edit the new
onboot.Ist and remove the whbar.tcz line.

Now that the extensions have been copied, we can install the
extensions needed to create the |SO:

$ tce-load -wi advcomp mkisofs-tools

25.2. Make the boot wait for getting an
IP address

A normal Core boot does not wait for the network to be up;
however, for adedicated RDP client, that's what we want to happen.

To meke the boot wait for it, we need to add the commands to one
of the synchronous files. Sincethis is a system-wide resourcewe' re
waiting for, /opt/bootsync.sh is our target.

WE | include our customizations in a new initrd file:

116

Fire up rdesktop
when the systemis up

sudo su
When editing the main system files, it's best to be
root, so that permissions and ownership are correct.

H H o

cd /tmp

mkdir -p initrd/opt

cp /opt/bootsync.sh initrd/opt
editor initrd/opt/bootsync.sh

A A B A

Paste the following piece of script to theend of thefile

count=0
echo -n Waiting for the network...
while ["$count" -1t 60]; do
ifconfig eth® | grep -gq inet && break
sleep 1
count=$((count + 1))
echo -n .
done

This piece of saript will wait up to 60 seconds, checking if the first
wired nework card has an | P address, and if it does, breaking out of
the loop.

25.3. Fire up rdesktop when the system
1S up

Well add afileto the default user’'s X.d directory. This script piece

will run rdesktop in aloop, popping up an eror messageif itfails
for some reason.

Given that no writable disk will be mounted, the system can be
safely tumed off via the physical power button. If thisistorunona
set of dedicated terminals, it might also be useful to add acron job
to tum the system off at preset hours.

117

Fire up rdesktop
when the systemis up

sudo su
When editing the main system files, it's best to be
root, so that permissions and ownership are correct.

H H o

cd /tmp/initrd

mkdir -p etc/skel/.X.d
cd etc/skel/.X.d
editor rdesktop

Add the desired rdesktop commend lineto thefile

while [1]; do
rdesktop -u user 10.0.2.2:7777 2> /tmp/rderr
["$?" -ne 0] && popup ‘cat /tmp/rderr’

A A A A

done

This starts up rdesktop, directing errors to afile, and if thelaunch
fails, show the errors to the user with a popup message.

Le’s pack our new initrd image up:

$ cd /tmp/initrd

$ sudo find | sudo cpio -0 -H newc | \
gzip 2 > ../myimg.gz

$ advdef -z4 ../myimg.gz

Le’'s placetheinitrd on the SO, and haveit be used:

$ cd /tmp/newiso/boot

$ sudo mv /tmp/myimg.gz .

$ sudo sed -i 's@core.gz@&,/boot/myimg.gz@g’ \
isolinux/isolinux.cfg

If you'd like to tweak the boot menu, or set other boot options, edit
isolinux.cfg now.

Finally, createthe |SO imege:

$ cd /tmp

$ sudo mkisofs -1 -J -r -V TC-custom -no-emul-boot \
-boot-load-size 4 \
-boot-info-table -b boot/isolinux/isolinux.bin \
-c boot/isolinux/boot.cat -o TC-remastered.iso newiso

118

Result

25.4. Result

Our new 1SO image boots gracefully to the desktop, waiting for the
network to be up, running the RDP dientin aloop.

Booting the imagein KV M takes under one second.

ThelSO imegeis gpproximatdy 17 Mb in size, and the systemuses
35 Mb of RAM when running. It's recommended to add about 5-20
Mb to that to account for different resol utions and drivers, putting
therequired RAM for this image at 55 Mb (64 Mb rounded to the
nearest conmon size).

119

Chapter 26. File hosting via
FTP

Often you might need somebody to send you a bigger file whichis
untenable over plain old email. The common altemati ves nowadays
arethird-party hosters such as Mega and Mediafire, or cloud
services such as those from Microsoft, Google, or Dropbox.

The downside to these third-party services (besides the obvious
reliance on a third party - if they go down, you can’t get to your
file) is that they’ re not compatible with all browsers, occasiondly
seemingly break at random, and sometimes host intrusive ads. They
also cannot be autonated easily, or require personal information to
upl oad/downl oad.

To thisend, we'll be setting up a FTP server with anonymous
uploads, and a read-only downloads section. FTP can beeasily
scripted, and it tends to be more effident at serving files than HTTP.

Please keep in mind that FTP works over plain text; don’t store
confidential data here, or use any secure passwords for the
authenticated content.

It's assumed the data driveis mounted on boot. W€ Il be using sdal
inthis exanple.

26.1. Installing & configuration

Well beusing asmall server called BFTPD. Instdl bftpd.tcz
onboot, and add this line to /opt/bootlocal.sh:

bftpd -d -c /mnt/sdal/bftpd.conf

Copy the supplied example config fileto thedrive, and openitin
your favorite editor:

121

Installing &
configuration

$ cp /usr/local/etc/bftpd.conf.sample \
/mnt/sdal/bftpd.conf
$ editor /mnt/sdal/bftpd.conf

Theentries we |l consider now are HELLO STRING, QUIT_MSG
(cosmetic messages), the ALLOWCOMMAND ones, the
USERLIMIT ones, and the user sections.

Once the hello and quit messages are to your liking, check that
the only allowed command is STOR - users aren’t allowed to
ddetefiles, or to send site commends (spedal server-dependent
commands).

Y ou might want to limit the connections with the USERLIMIT
variables, in particular USERLIMIT_SINGLEUSER that stops a
single user being logged in many times at once.

In the user section, the default file sets up the anonymous login as
redirecting to the system user ftp. This fits us well. However, we
want anonymous |ogins to be enabled, and the user to be restricted
to our data drive, so removethe DENY _LOGIN variablefromthe
user ftp section, making the section look likethis:

user ftp {
#Any password fits.
ANONYMOUS USER="yes"
CHANGE UID="yes"

}

The next steps are creating the ftp user, backing up the user files,
and areating the upload and download directories with appropriate
permissions.

122

Testing

This
echo
echo
echo

sudo

sudo

H# H# R i e H R H H He

sudo adduser -h /mnt/sdal -D -H ftp
Their home dir is /mnt/sdal,

they don't have a password, and

the directory will be created manually.

Add the user files to the backup.

can also be done via the GUIs if desired.
"etc/passwd" >> /opt/.filetool.lst
"etc/shadow" >> /opt/.filetool.lst
"etc/group" >> /opt/.filetool.lst

cd /mnt/sdal
mkdir upload download

chown ftp upload

chmod o-w download

chmod g+w upload

Anything placed in the download dir
is read-only via FTP.

As asanity check before rebooting, start the server in no-fork mode
to seethat there are no typos in the config file, or other issues:

$ sudo

bftpd -D -c /mnt/sdal/bftpd.conf

If there are no errors, press ctrl-C

26.2. Testing

After areboot, our FTP server should be running. Check thatit's
present in the running processes list by running ps, and thatit's
listening by running netstat -1 -t.

A command-line FTP client is availablein theinetutils extension,
but you can use any browser or FTP client to test the uploads and
downl oads.

26.3. Results

Y ou now have a convenient place to store files from anywhere The
server requires about 500kb of RAM per logged-in user.

123

Chapter 27. Network booting

Core can essily be booted via the network (PXE). This may be used
to have many diskless computers, for exanmple as stand-al one web
browser stations, or as thin clients that rdy on the server for some
needs; or as a distribution method for an installer, recovery setup, or
anything else you can come up with.

Coreis dso capable of bang the boot server, butit’'s not required;
you may useany systemwith TFTP, PXE (DHCP), and HTTP/NFS/
other file sharing protocol as the server, from CentOS to Debian to
even Windows. We don’t recommend that last option though.

Coreincludes aquick setup wizard for testing PXE booting, tc-
terminal-server. It dlows you to quickly setup onemachineas a
mothership, sharing the base image, to test if the other computers
on your network (and the network itself) work for PXE booting. For
more permanent setups, it’'s not recommended to use the wizard.

As the server setups vary wildly, we won't go into the configuraion
details of any specific one in this chapter. | nstead we cover the

avalable options, hel ping you decide which setup fits your needs
the best.

Steps
a. Sdecting the baseimage
b. Are separae extensions needed?

c. Other considerations

125

Selecting the
base imege
27.1. Selecting the base image

For thin dients, the obvious option is to use the shipped image, the
normal core.gz and kemd. However, if theclients areto be stand-
alone, it might make senseto create a remaster instead, holding
your modificaions in asecond initrd (pxelinux is capable of using
multiple initrds).

The constraints of the dients also factor in. If they arelow in RAM,
aremaster whare everythingis in RAM may prove unfessible;

in this situation, you may trade performance for lower RAM use
by mounting extensions from the server. |t does increase network
demands, but as the extensions are then not copied to dient RAM,
only cached in thefile system cache, it can save alot of RAM.

27.2. Are separate extensions needed?

If the extensions are integrated into the initrd, as in the above
section, then you can skip this section.

Core supports severd ways of |oading extensions over the nework.
Some of these (NFS, NBD, AOE) mount the share over the network,
using the extensions remotdy from the server; the others (TFTP,
HTTP) download the extensions over the given protocol to RAM,
then mount them fromthere

Considering the latter option, one might ask what's the difference
to just having themin the initrd in the first place. After dl, in both
cases they are downloaded fromthe server into the client’'s RAM.
Thedifferenceis in boot speed: TFTP, even when tuned to use high
block sizes, is a slow protocol - using HTTP may improve transfer
speeds gredly.

Theother part is the more even access pattem: if everything werein
oneinitrd, that dient would make one big request; if each extension
was requested individually, the network regquests would be nmore
spread out over time.

126

Other considerations

One may also combine the mount-a-share goproaches with
having extensions OnDemand. This combination would allow
for very quick boot speeds, and less network usage, as the bigger
applications would only be requested once the user starts them.

Y ou're not limited to the mentioned protocols. If there's
a Linux client for your file protocol, you can include

v just that dient and the extension downloading logicin
theinitrd, allowing you to use more exotic protocols to
download or mount extensions from the server.

27.3. Other considerations

Theextensions are usually read-only from the clients' end, meking
it easy to upgrade in one place, at the server, and a reboot of the
clientisall that's needed. Often some data needs to be RW though,
perhaps home directories over NFS, perhgps some other shared
folder for comnon data

Thememory use needs to be considered. A diskless dient may have
little recourse when its RAM runs out. While Core ships the zram
module by default, dlowing you to over-commit the RAM by about
20%, you may still need swap.

Swapping over the network is not advised; it's not yet quite stable
in the current kemd's, and doing it over the network may cause
too much congestion. As abackup, you might consider |etting the
clients have HDDs, but only as swap partitions.

127

Chapter 28. Bringing up old
hardware - common gotchas

Older hardware often carries limitaions. This chapter lists some of
them, and what you can do about them.

One might question the point in doing so, particularly if electricity
costs in the area are high. However, getting some use of old
hardware can befruitful, often free of any immediate costs, and
helps reduce dedronic waste.

The power use of old computers is not high in comparison to
modemn desktop computers, so if you have a job they can perform,
the power costs may not create a big enough offset to pay for anew
computer.

The power usage of old computers is surprisingly low compared to
modem 500W power guzzlers; afirst-generation Pentiummay run
in 60W full, less than the new power guzzler runs atidle.

28.1. BIOS

Thefimmware, most often buggy, and coincidentally, most often not
user-replaceabl e beyond flashing an imege fromthe manufacturer,
may carry anumber of limitations.

Evenif claiming to support a boot method (USB, CD, PXE, floppy),
that support might be buggy. BIOSes fromthe USB 1 erawill often
only boot fromUSB with the USB-ZIP emulation mode.

Should the BIOS not support booting fromaCD, and a PXE setup is
inconvenient, we recommend removing the hard disk, and instaling
to it on another computer. Core does not read any info fromthe
installing computer, so the resulting install will work just fine when
moved to thetarget. Altematively, Smart Boot Manager may be
used to chain-load the CD fromthe floppy drive.

Sound

If thetarget has integrated graphics, the BIOS often controls
theamount of RAM to assign to the grephics card. This amount
limits the resol utions you can use, and the accd eration that can be
avalable. If you have the choice, use a minimum of 16 MB.

Some BIOSes, notably Ddl ones with Intel graphics, ether don't
offer that choice, or only offer very small choices. On these
machines the only way around the limit is to use Xorg with the fully
accelerated driver, as it can control theRAM allocaion regardless
of the BIOS. With Xvesa or the framebuffer, you might be limited
to 640x480 a a low color depth.

28.2. Sound

Core offers two sound systerms: ALSA and OSS. OSS doesn’t
support any ISA cards, so if thesound card is connected via the ISA
bus (either as an extension card, or by an integrated ISA bus on the
motherboard), your only choiceis ALSA.

ISA sound cards often cannot be autometi cally detected. In these
cases, you will need to find out the name of the sound module, and
to add a modprobe call to bootlocal.sh. Often you might need to
also pass the card’s parameters (IRQ, DMA address) as options to
the driver module.

28.3. VESA support

Some older graphics cards don't have proper support for the VESA
standard. This means that the standard X vesa server might display at
a wrong resolution, with wrong colors, or fal to start dtogether.

In these cases, the options are the framebuffer, and Xorg. To usea
framebuffer resolution, you need to add the vga=791 bootcode to
your bootloader’s config file (where 791 is a number specifying the
resolution and color depth - this particular oneis 1024x768 a 16bit
color depth), and to instd| the Xfbdev server instead of Xvesa.

130

Networking

Table of common VESA resolutions:
640x480 800x600 | 1024x768 | 1280x1024
256 colors 769 771 773 775
16-hit 785 788 791 794
24-bit 786 789 792 795

Should the framebuffer also fail, or if non-V ESA resolutions are
needed, you'll need to install Xorg with a suitabledriver.

There doesn’t exist a Xorg driver for all cards - check

MO online beforetrying.

28.4. Networking

ISA network cards have the same downsides as | SA sound cards:
you may need to manua ly modprobe the correct driver, and to pass
the card’'s details as driver parameters.

PCMCIA network cards should work autometically, as long as
the PCMCIA bus itself is recognized. Y ou can use the lspcmcia
conmmand to list any attached cards to seeif they are recognized.

Should the computer not have a nework card, Linux supports
various other ways to move data in addition to plain old ethemet.

Y ou can hamess infrared, the serid or pardld port, or eventhe
sound card to move data (yes, even to browse theintemet!) as long
as you have another computer that can act as a router.

28.5. Bigger hard drives

ThelDE bus will usually accept drives as large as you can buy, up
to terabytes, even on computers that were sold with 10 GB drives.
The possible issue with these is that the BIOS cannot read past a
certain size, even though Linux can.

131

Memory limitations

Thesolution to this issue is to areate a separate boot partition at
the beginning of the disk, meking sure the BIOS can read all of
it The common BIOS limitsare 137 GB, 8.5 GB, and 528 MB,
so by making your boot partition be |ess than 500 MB in size you
guarantee that the BIOS will beableto read it.

For Core, the boot partition only needs to contain the boot |oader,
kemnd, and core.gz. Any persond data and extensions can resideon
different partitions.

28.6. Memory limitations

Of all the limits, RAM might be the hardest to overcome. While
used RAM sticks of the older technol ogies can be bought for cheap,
the computer may not be able to take much (each nmotherboard has a
maximumamount). A large swap partition is recommended (at least
100 MB).

As long as there's enough RAM to boot Coreitsdf (28 MB in text
mode, 48 MB in GUI atthe timeof writing), alot can be done
through selecting lightwei ght programs. | nstead of the latest Firefox
or Chrome, consider an older varsion of Opera; if) avascri pt support
is not needed, Dillo; if textis enough, lynx or links.

) Some versions of Links can display images. Itis avery
MOTE |ightweight browser if the features are enough.

Likewise, for playing music, eschew the complex GUI players like
Amarok in favor of simpler ones like XMMS, or command-line
ones like mpgl23 or nplayer.

To write documents, Ted is alightweight RTF editor. Older
OpenOffice may be considered for more complex documents.

132

Memory limitations

Should the target not have enough RAM to run Core itself, there are
some things you can do to help the situaion with a remester. The
base image contai ns a couple megabytes of drivers: by removing
those the target doesn’t need, you can lower the required RAM.
Using text mode is agiven.

Depending on the situation, zram may or may not be useful. With
very litte RAM, the compressed swap in RAM might actudly act
counter-intuitively, not leaving enough to run the desired program
causing constant swapping. Y ou can disable it with the bootcode
nozswap.

133

Chapter 29. A Web kiosk

By Luiz Fernando Estevarengo AKA Zendrael

A kiosk machineis essentially a terminal to access the web: any
website, just one website, or perhaps aweb app. It does not run any
kind of gop other than the web browser..

With Core, we can build a simple kiosk with little effort, a bunch of
extensions and the creation of an add-on to our browser of choice.

We assume persistent home/opt are not used, and that the home dir
is under backup. This enables a clean dlate on each reboot.

29.1. Selecting extensions
Starting with an installed TinyCore, you will need:
® firefox.tcz (our browser)
® idesk.tcz (for the screen icons)

® liberation-fonts-ttf.tcz (many sites are designed for Miaosoft
fonts)

® openbox.tcz (deds better with our add-on | ater)
Load all these extensions OnBoot.

If you want to | et the user do more on the web, you can dso use
alsa.tcz, getflash.tcz, and your choice of Firefox add-ons.

For a better looking experience, you may want to have a gtk2 theme
engine loaded with a theme of your choice. This will not be covered
as it depends on your preferences.

135

Configuring
Core extensions

29.2. Configuring Core extensions

29.2.1. iDesk icons

What happens if our user, for some reason, doses the browser

or it crashes? We must have an easy way to restart the browser,
preferably with a visual clue likean icon in the desktop. iDesk leis
us do this with icons that can not be changed, deleted or moved on
the desktop.

) Y ou may aso choose to use the induded whbar; or to
M= nothaveicons a all, but to run Firefox in aloop (so that
" whenthe previous instance d oses, a new one is started).

Inside your home directory areate onefile, .ideskrc which will
contain the iDesk configuration; and one directory, where your
icons will be kept, .idesktop:

$ touch .ideskrc
$ mkdir .idesktop
$ editor .ideskrc

Edit the .ideskrc config fileto reflect the colors of your desktop and
some grid options:

136

iDesk icons

table Config

end

FontName: sans
FontSize: 10
FontColor: #ffffff
Locked: false
Transparency: 50
Shadow: true
ShadowColor: #000000
ShadowX: 1

ShadowY: 2

Bold: false
ClickDelay: 100
IconSnap: true
SnapWidth: 55
SnapHeight: 100
SnapOrigin: BottomRight
SnapShadow: true
SnapShadowTrans: 200
CaptionOnHover: false

table Actions

end

Now, inside the .idesktop directory we will create the file that

Lock: control right doubleClk

Reload: middle doubleClk
Drag: false

EndDrag: left singleClk
Execute[0]: left doubleClk
Execute[1l]: right doubleClk

contains the information of our icon, to restart the browser should it
crash or should the user closeit:

$ cd .idesktop
$ touch kiosk.lnk
$ editor kiosk.lnk

With this content:

137

iDesk autoload

table Icon
Caption: Web
Icon: .idesktop/web.png
X: 100
Y: 100
Command[0]: firefox
end

Note the icon mentioned in the .idesktop folder. Y ou can use any
icon you want; to usethe Firefox icon, you can copy it from fusr/
local/share/pixmaps.

29.2.2. iDesk autoload

As iDesk will serve to show an icon for our browser, we need to
startitin a suitable place So, in the ~.X.d/ directory we will creste
afileto start it up:

$ mkdir -p ~/.X.d

$ cd ~/.X.d
$ echo "idesk &" > idesk

29.2.3. Firefox profile

Wewill create a custom profile to handle the kiosk. Open and dose
Firefox a least once so that the default profile gets created.

Open up aterminal and type:

$ cd ~/.mozilla/firefox
$ 1s

Y ou will find a directory like j08765.default and a file named

profiles.ini. Wewill change the profile name to a more convenient
one, andsetitintheini file:

$ mv *.default kiosk.default
$ editor profiles.ini

Then changethe Path in profiles.ini to kiosk.default as follows:

138

Firefox autoload

[General]
StartWithLastProfile=1

[Profile0]
Name=kiosk
IsRelative=1
Path=kiosk.default

Start and close Firefox to seethat the moved profile is working.

29.2.4. Firefox autoload

Wewill nead to have Firefox loaded as soon as our kiosk runs X.
Here we follow the same way that we used for idesk:

$ cd ~/.X.d
$ echo "firefox &" > firefox

29.2.5. Configuring Firefox
To meke the best of our kiosk, we will setup it to use less space on
the sareen, and avoid some troubles with ads. Open up Firefox, right
click the menu bar and uncheck the Menu Bar item Then, go to the
Firefox menu and access the Add-ons manager.
The add-ons we will use are:
® MovableFirefox Button
® Ad-block Plus

Install both by searching for them in the search box, and then restart
as required.

Next, we will do some coding with XUL and J avascript.

139

Creating our add-on

29.3. Creating our add-on

Firefox add-ons are easy to build and can be used without the need
to upload themto the Mozilla website. We will areate an add-on to
create a clock button, and to control the behavior of Firefox on the
screen every timeit loads.

29.3.1. Folder and file structure

Start by creating the files and folders:

cd ~/.mozilla/firefox/kiosk.default/extensions
mkdir -p clock@kiosk.com/chrome

cd clock@kiosk.com

touch install.rdf chrome.manifest

cd chrome

touch clock.xul clock.js clock.css

A A A OB A A

Theresulting file structure will look likethis:

clock@kiosk.com/
chrome.manifest
install. rdf
chrome/
clock.css
clock.js
clock.xul

Themanifest and the rdf files will set up our add-on to be viewed
and loaded by Firefox. The chrome directory (which doesn’t have
anything to do with Google Chrome or Chromium browser) will
hold the add-on files. Edit each of them with its contents:

140

Folder and
file structure

chrome manifest
content clock chrome/

long line

style chrome://global/content/customizeToolbar.xul \
chrome://clock/content/clock.css

another long line

overlay chrome://browser/content/browser.xul \
chrome://clock/content/clock.xul

Please note the line continuations - this is not ashd| script, so the
long lines will need to be intact Removethe\ line continuation
sign, and put the following line on thesame line.

141

Folder and
file structure

install.rdf

<?xml version="1.0"?>

<RDF
xmlns="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:em="http://www.mozilla.org/2004/em- rdf#">

<Description
about="urn:mozilla:install-manifest"

em

em:
em:

em

em:
em:

em

:name="clock"

description="Clock for Kiosk"
creator="Zendrael"

:id="clock@kiosk.com"

version="1.0"
homepageURL="http://www.zendrael.com/kiosk"

:iconURL="chrome://clock/content/icon.png">

<em:targetApplication><!-- Firefox -->
<Description

em:
em:
em:

id="{ec8030f7-c20a-464f-9b0e-13a3a9e97384}"
minVersion="5.0"
maxVersion="99" />

</em:targetApplication>

<em: file>
<Description
about="urn:mozilla:extension:clock"

em:

package="content/clock/" />

</em:file>
</Description>
</RDF>

142

Folder and

file structure
chrome/clock.css
/* let the buttons be smaller */
.clean {

padding: Opx;
margin: Opx;

}

/* remove arrow from buttons */

.clean .toolbarbutton-menu-dropmarker {
display: none !important;

}

#osStatus-button-clock {
padding-top: 5px;
margin-right: 3px;

}

#appmenu-toolbar-button
.toolbarbutton-menu-dropmarker {
display: none !important;

}

toolbar:not([mode="text"]) #appmenu-toolbar-button
> .toolbarbutton-icon,
toolbar:not([mode="text"]) #appmenu-button
> .button-box .button-icon {
list-style-image:
url("moz-icon://stock/system-run?size=16")
limportant;

}

toolbar[mode="icons"] #appmenu-toolbar-button
> .toolbarbutton-text,
toolbar[mode="icons"] #appmenu-button
> .button-box .button-text {
display: none;

143

Folder and
file structure

chrome/clock.js

//
//
do

/*

Y/
fu

}

Start main window without borders
Note the long line
cument.getElementById("main-window") .\
setAttribute("hidechrome", "true");

function clock
show the time and date

nction getClock(){
var obj =\
document.getElementById("osStatus-button-clock");

var now = new Date();

var hours = now.getHours();

var minutes = now.getMinutes();
var seconds = now.getSeconds();
var timeValue = ""+ hours;

timeValue +=
((minutes<10) ? ":0" : ":") + minutes;

//set date

var month = now.getMonth() + 1;

var day = now.getDate();

var year = now.getFullYear();

var dateValue = day + "/" + month + "/" + year;

obj.setAttribute("value", timeValue);
obj.setAttribute("tooltiptext", dateValue);

//set timeout events, updating clock
setInterval("getClock()", 1000);

144

Folder and
file structure

chrome/clock.xul

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css"
href="chrome://clock/content/clock.css"?>

<!IDOCTYPE overlay >
<overlay id="custombutton-overlay"
xmlns="http://www.mozilla.org/keymaster/ \
gatekeeper/there.is.only.xul">

<script type="application/javascript"
src="chrome://clock/content/clock.js"/>

<!-- Firefox -->
<toolbarpalette id="BrowserToolbarPalette">
<toolbaritem id="osStatusItems"
label="0S Status Items">
<label id="osStatus-button-clock"/>

</toolbaritem>
</toolbarpalette>
<!-- button details -->
<label id="osStatus-button-clock"
value="00:00"

tooltiptext="00/00/0000"
class="toolbarbutton-1 \

chromeclass-toolbar-additional clean"
crop="none" orient="horizontal" dir="reverse"
/>

</overlay>

Note the two line continuations here too - the mozilla.org link needs
to be without spaces.

Now, start Firefox. [t may ask if you want to install our clock
extension: do so.

145

Shutdown
considerations

After arestart, nothing will change; we need to right-click the
toolbar and go to Customize. In the window we will find our clock
add-on. Drag it to the right side of the + button in the same bar that

tabs gppear.
Restart and dose Firefox once more

29.4. Shutdown considerations

It's desirable to be able to tum off our system by the power switch,
meking the kiosk more rdiable in the event of power loss.

To do this, enable copy2fs via the Toggle default install to file
system option in Apps. Now all extensions are loaded to RAM.

As thefind step, we will unmount the disk after the boot has
completed. This will prevent any corruption fromgetting to the disk,
enabling dean shutdowns via the power switch.

Add the following to /opt/bootlocal.sh, replacing sdal with your
drive

umount /mnt/sdal

29.5. Results

Tuming this fromaHD-based install to a PXE-based one
would |t you have an essily managed fleet of diskless
- web kiosks.

Reboot the systemand you will get Firefox taking all the desktop
without the title bar and with the clock working. Our kiosk is now

ready!

At thetime of writing, the Firefox version was 21. The install used
about 54 M b of space. When just started, displaying the default
Firefox homepage the RAM usage was 232 Mb.

146

Results

The exact requirements depend on the web pages you intend to

allow, but 256 Mb would be tight. 512 Mb of RAM would be
recommended for this use.

49 @ Mozills Firefox Start Page ok 11::|u|
@8 | @ search or enter addres

Goge |

. Sign up for our manthly newsletter and get the latest on your
favorie browser,

Sattngs

147

Index

B
bootlocal.sh, 90
bootsync.sh, 90

C
cdedirectory, 69
core2usb, 18

D

depfile, 97
Download +load, 26
Download only, 26

F
firstrun, 94
frugal install, 4

H
HyperV, 46

I

info file, 98
init, 87
initrants, 87
initrd, 87

K
KVM, 45

L
listfile, 98

M
md5 file, 99

@)

OnBoot, 25
onboot.Ist, 94
OnDemand, 25

Q
Qemuy, 45

R
remester, 63

T

tc-config, 88
tc-install, 11
tce-ab, 29
tce-load, 30
tce-update, 36
TCZ format, 83
treefile, 99

\Y4
Virtudbox, 45
VMWare, 46

X
xwbar.lst, 95

Z
zsync file, 100

149

