
✬

✫

✩

✪
1: Computer Science CSCI 261 — Lecture 1

Computer Science CSCI 261 Fall 2020

Computer Architecture and Assembly

Language

Dr. Peter Walsh

Department of Computer Science

Vancouver Island University

peter.walsh@viu.ca



✬

✫

✩

✪
2: Computer Science CSCI 261 — Lecture 1

Course Overview

© Objectives:

• master the principles of computer architecture

• introduce computer organization concepts

• introduce time-oriented programming

• work with assembly language and C

• explore concepts in real-time and embedded systems

© Prerequisite: Min. ”C” in CSCI 161

© No face-to-face instruction

© Course Outline and Information Web Pages:

• http://csci.viu.ca/~pwalsh/teaching/261/261/Info-Sheet.html

• http://csci.viu.ca/~pwalsh/teaching/261/261/261.html



✬

✫

✩

✪
3: Computer Science CSCI 261 — Lecture 1

Hardware/Software Resources

© Student IT Requirements:

• high-speed Internet connection

• computer with audio and video capabilities

© Laboratory (Physics Room 115):

• lab contains 17 cub machines running Linux

• there is no physical access to Room 115

• access the cubs using ssh and/or PuTTY

• simulators replace microcontroller boards

© Key Internet Applications:

• VIUOnline (Zoom)

• VIUTube (Video Portal)

• VIULearn (Assessment)



✬

✫

✩

✪
4: Computer Science CSCI 261 — Lecture 1

Course Delivery

© Lectures:

• lecture videos posted to VIUTube

© Labs:

• pre-lab videos posted to VIUTube

• scheduled lab time is reserved for Q and A and

student evaluation using Zoom

• no labs the first week of term



✬

✫

✩

✪
5: Computer Science CSCI 261 — Lecture 1

Course Delivery cont.

© Office Hours:

• reserved for answering email questions

© Quizzes:

• administered through VIULearn

• dates TBD

© Lab Tasks:

• see course page for task specification

• Zoom for on-line evaluation

• git for off-line evaluation



✬

✫

✩

✪
6: Computer Science CSCI 261 — Lecture 1

Student Attendance for CSCI 261

© On-Campus

• you are NOT required to be on-campus

© Off-Campus

• you are expected to attend your scheduled

labs by Zoom

• you must submit your lab task solutions by Zoom

or git prior to assigned deadlines

• you must complete quizzes through VIULearn

prior to assigned deadlines

• my goal is to answer all email questions

during my office hours

• you may view all other course work-products

at your leisure



✬

✫

✩

✪
7: Computer Science CSCI 261 — Lecture 1

Computer System Architecture

© Typical Computer Science Abstraction

4ςΣΓΙΩΩΣς

∋ΣΡΞςΣΠ�9ΡΜΞ

%09

6ΙΚΜΩΞΙςΩ
1ΙΘΣς] −�3

&ΨΩ



✬

✫

✩

✪
8: Computer Science CSCI 261 — Lecture 1

Computer Components

© Control Unit (CU)

• fetch, decode and monitor the execution of

instructions

© Arithmetic and Logic Unit (ALU)

• perform data transformations under CU control

© Registers

• storage locations in the processor

© Processor

• CU, ALU and registers



✬

✫

✩

✪
9: Computer Science CSCI 261 — Lecture 1

Computer Components cont.

© Microprocessor (Up)

• a processor on a single integrated circuit

(IC or chip)

© Microcontroller (Uc)

• a microprocessor with memory and I/O on a

single chip

© Single Board Computer

• computer on a single printed circuit board (PCB)



✬

✫

✩

✪
10: Computer Science CSCI 261 — Lecture 1

Computer System Architecture cont.

© Typical Computer Engineering Abstraction

∋ΣΡΞςΣΠ (ΕΞΕΤΕΞΛ

1ΙΘΣς] −�3



✬

✫

✩

✪
11: Computer Science CSCI 261 — Lecture 1

Computer Components cont.

© Data-path

• processor components that perform

data transformation

© Control

• processor components that command

and control the data-path, memory and

I/O subsystems



✬

✫

✩

✪
12: Computer Science CSCI 261 — Lecture 1

Instructions

© High level language (HLL)

• e.g. x = 5 + 1

© Assembly language

• e.g. mov R0, 5

© Machine language

• e.g. 1011000000000101

© In general:

• 1 HLL instruction is translated into many

assembly language instructions

• 1 assembly language instruction is translated

into 1 machine language instruction



✬

✫

✩

✪
13: Computer Science CSCI 261 — Lecture 1

Instruction Translation Examples

x = 5 + 1 ---> mov R0, 5 # R0 <- 5

add R0, 1 # R0 <- R0 + 1

save R0, x # x <- R0

mov R0, 5 ---> 10110000 00000101



✬

✫

✩

✪
14: Computer Science CSCI 261 — Lecture 1

Instruction Execution

© Stored Program Concept

• machine language is stored in the computer

along with relevant data

• the computer can manipulate a program in

the same way it can manipulate data

© Fetch and Execute Cycle

• one by one, machine instructions are

fetched from memory and executed

until the machine is halted



✬

✫

✩

✪
15: Computer Science CSCI 261 — Lecture 1

Tools (used in CSCI 160)

© Compiler

• translates source code to object code

• e.g. foo.c to foo.o

© Linker

• translates object code to machine code

• e.g. foo.o to foo

© Loader

• loads the machine code into memory

in preparation for execution



✬

✫

✩

✪
16: Computer Science CSCI 261 — Lecture 1

Additional Tools

© Compiler (GNU compiler with -S switch)

• translates source code to assembly language code

• e.g. foo.c to foo.s

© Assembler

• translates assembly language code to object code

• e.g. foo.s to foo.o



✬

✫

✩

✪
17: Computer Science CSCI 261 — Lecture 1

Why learn assembly language?

© Efficiency

• programmers are unlikely to out-perform a

modern compiler but, on occasion, we

may need to violate compiler conventions

© Resource Access

© Foundation Knowledge

• CSCI 360 Operating Systems

• CSCI 355 Digital Design

• CSCI xxx Compiler Construction

• CSCI 460 Networks

• CSCI 461 Embedded and Real Time Systems


