
1

Supplement to

Logic and Computer
Design Fundamentals

3rd Edition1

VLSI PROGRAMMABLE LOGIC 
DEVICES: XILINX SPARTAN II 
FAMILIES WITH BACKGROUND 

APPENDIX

The advantage of using a PLD in the design of digital systems is that it can be pro-
grammed to incorporate complex logic functions within a single IC. But for larger
or more complex functions, VLSI technology is appropriate. VLSI (Very Large
Scale Integrated) refers to digital systems that contain thousands to millions of
gates within a single IC chip. 

In the last two decades, VLSI approaches have been developed for PLDs to
handle designs that in the past were implemented by many small chips or with gate
arrays having from 1,000 to millions of gates. The new approaches yield high-
capacity programmable logic devices typically sharing the following properties:

1 © Pearson Education 2004. All right reserved. 

his reading supplement covers specific families of VLSI programmable logic 
devices from Xilinx®, Inc. The device families chosen are those most likely to be 
used in beginning logic laboratories that use PLDs. This supplement is 

referenced at the end of Chapter 3 of the text to permit early coverage of the material 
for use in laboratories that run as part of a course or concurrently with the course. In 
order to permit this early coverage, a number of concepts covered in Chapters 4 
through 6 are needed. For convenience, a brief introduction to these concepts is 
provided as an appendix at the end of this supplement. If this supplement is used 
before completing Chapter 6, this appendix should be studied first as preparation.

Coverage of a VLSI PLD family is strongly recommended if the course has an 
associated laboratory component using the family. Coverage of one or both of the 
VLSI PLD families is recommended as a basic introduction to VLSI PLDs.

T



2

1. substantial amounts of uncommitted combinational logic; 
2. pre-implemented flip-flops and/or latches;
3. programmable interconnections between the combinational logic, flip-flops,

and the chip input/outputs; 

4. memories for storing information; and

5. a volatile or non-volatile programming technology.

Aside from these properties common to all VLSI PLDs, the devices differ from
vendor to vendor. Field-Programmable Gate Arrays (FPGAs) has become a
generic term referring to SRAM-based VLSI PLDs. To illustrate VLSI PLDs, we
present an overview of two medium-density FPGA families that are most fre-
quently used in basic undergraduate course laboratories. 

XILINX® SPARTAN™-II FIELD-PROGRAMMABLE GATE 
ARRAYS2

Xilinx Spartan-II Field-Programmable Gate Arrays (FPGAs) include two major
families: 1) The basic Spartan-II family and the enhanced Spartan-IIE family.
There are many important differences in these families, including electrical charac-
teristics and propagation delays. However, these parts with the same basic part
numbers (except for the E) have similar architectures and logical structures. As a
consequence, the discussion given here, while based on the basic Spartan-II family,
applies as well to most of the features of the enhanced Spartan-IIE family. Signifi-
cant differences will be pointed out in the discussion.

Xilinx Field-Programmable Gate Arrays (FPGAs) use SRAM technology to
store the programming information. After power is applied to the circuit, the pro-
gram data defining the logic configuration must be loaded into the FPGA SRAM.
There are a number of different ways of loading the information, a process
referred to as configuration. Once the programming information is loaded, the
FPGA switches from the programming mode to the operational mode in which the
logic is available for use. The logic remains until either the FPGA is reprogrammed
or the power is turned off. The ability to reprogram the FPGA allows different
logic to be implemented in a system by the same FPGA at different times, leading
to the concept of reconfigurable systems.

Values loaded into SRAM bits during configuration control the logic imple-
mented in a Xilinx FPGA. Three techniques, illustrated in Figure 1 (pass transistor
control, multiplexer control, and lookup table implementation) are used to convert
the stored 0’s and 1’s into logic. In addition, a portion of the SRAM bits reside in
Block RAMs that are accessible to the user. Bits stored in a Block RAM during
configuration permits the RAM to be used as a ROM. Otherwise, Block RAM can
be can be configured to act to act as a RAM in a user’s design. 

2 Xilinx is a registered trademark of Xilinx, Inc and Spartan is a trademark of Xilinx, Inc.
This material in this section is intended for educational use only. For all other uses, consult
the documentation available from the Xilinx, Inc. website listed in the References.



3

Figure 1(a) shows an SRAM cell driving the gate (G) terminal of an n-chan-
nel MOS transistor. This transistor acts like a switch. If an H (logic 1) is applied by
the SRAM cell, then the path between the two other terminals of the n-channel
transistor is CLOSED, permitting a current to flow between the two connected
wiring segments. If an L (Logic 0) is applied, the path between the two other termi-
nals is OPEN, preventing current flow. When such a transistor is to make a bidirec-
tional connection for the passage of a signal between two wiring segments, it is
called a pass transistor. A Xilinx FPGA typically contains thousands to millions of
such transistors in its interconnection structure. 

In Figure 1(b), an SRAM cell is attached to the select input S of a 2–to–1
multiplexer. If the SRAM cell contains a 0, then the value on the 0 input of the
multiplexer is passed to the multiplexer output. If the SRAM cell contains a 1, then
the value on the 1 input is passed to the multiplexer output. The structure is used
to make selections between two signals. Sometimes there are two SRAM cells driv-
ing a 4–to–1 multiplexer. Finally, in cases where the data inputs to the 0 and 1
inputs are X and X, respectively, the multiplexer symbol is replaced by an XOR
gate with X applied to one input and the SRAM cell output applied to the other.

The final use of SRAM cells is to build a lookup table, as in Figure 1(c). In
the figure, a lookup table for a three-variable function F(A, B, C) is illustrated. The
SRAM cells in the table store the actual truth table of the function, so each cell
contains the value of function F for the corresponding minterm. The lookup table
is functionally equivalent to a multiplexer with the SRAM bits applied to the data
inputs and the input variables A, B, and C on the selection inputs. For example, if
(A, B, C) = 0 1 0, the value in SRAM cell 2 (binary 010) appears on the output of
the circuit. So the lookup table is conceptually a multiplexer implementation of
combinational logic, (as discussed in Chapter 4), with the SRAM cells providing
the data inputs. 

(a) Pass transistor control

(b) Multiplexer control

M

G

S D

M

S

MUX

0

1

(c) Look up table implementation

F(A, B, C)

A

B

C

M

M

M

M

M

M

M

M

FIGURE 1
SRAM Bit Use in Xilinx® FPGAs



4

Architecture

The Xilinx Spartan-II FPGA structure is shown in Figure 2. The logic within the
FPGA is implemented in an array of programmable blocks of logic called config-
urable logic blocks (CLBs) and Block RAMs for storing information. The Block
RAMs are SRAMs that are available for use in implementing RAM and ROM in
designs. Inputs to and outputs from the array of blocks are handled by input/output
blocks (IOBs) along the edges of the array. The CLBs and IOBs are intercon-
nected by a variety of programmable interconnection structures. By using an array
of programmable connection blocks referred to generically as switch matrices, con-
nections to and from CLBs and IOBs can be programmed and wire segments can
be interconnected to form paths from one block to another.

On the corners of the structure are four delay-locked loops (DLLs). These
are used to align the edges of internal clock signals at the flip-flop inputs with the
edges of an external clock. This approach creates a synchronous circuit that
includes an FPGA and its environment or multiple FPGAs and their environment.
In addition, the DLLs provide multiples of the external clock with different fre-
quencies that are useful in more complex designs.

DLL DLL

DLLDLL

B
LO

C
K

 R
A

M
B

LO
C

K
 R

A
M

B
LO

C
K

 R
A

M
B

LO
C

K
 R

A
M

I/O LOGIC

FIGURE 2
Xilinx Spartan-II FPGA Structure (Adapted with Permission of Xilinx, Inc.)



5

Logic

Most of the logic circuits in a Xilinx FPGA lie within the CLBs and the IOBs. Both
of these structures are internally programmable and fairly complex. We will look in
detail at the CLB and then sketch the main features of the IOB.

CONFIGURABLE LOGIC BLOCKS (CLBS) A simplified diagram of a slice of a Xilinx
Spartan-II CLB is shown in Figure 3. There are two slices in each CLB. Each slice
has 15 inputs and 7 outputs. A slice contains two lookup tables (LUTs) that imple-
ment 4-input, 1-output combinational functions. One has G4, G3, G2, and G1, as
inputs. The other has F4, F3, F2, and F1 as inputs. Each lookup table output enters
a Carry and Control Logic block which has additional inputs. Each Carry and Con-

FIGURE 3
Simplified Diagram of a Xilinx Configurable Logic Block (CLB) (Adapted with 
Permission of Xilinx, Inc.)

I3

I4

I2

I1

Look-Up
Table

D

CK

EC

Q

R

S

I3

I4

I2

I1

O

O

Look-Up
Table

D

CK

EC

Q

R

S
XQ

X

XB

CE

CLK

CIN

BX

F1

F2

F3

SR

BY

F5IN

G1

G2

YQ

Y

YB

COUT

G3

G4

F4

Carry
and

Control
Logic

Carry
and

Control
Logic



6

trol Logic block contains high-speed carry logic, an XOR gate, and an AND gate
that in combination with the LUT implement one bit of arithmetic functions such
as addition, counting, and multiplication. In association with this logic, each block
has a carry-in and carry-out signal. The carry-in for the lower block and the carry
out for the upper block are attached to other CLBs and the carry-out from the
lower block is attached to the carry-in for the upper block. These carry signals and
logic can also be used to cascade function generator outputs for implementation of
logic functions with large numbers of inputs. Each Carry and Control Logic block
also contains a number of multiplexers that select the outputs of the block from
among the various inputs. Figure 4 shows three additional multiplexers that appear
in each CLB. There is one F5 multiplexer in each slice. The two F5 multiplexer out-
puts in a CLB are the data inputs to the F6 multiplexer. By applying variables BX
from each slice to the select inputs of the F5 multiplexers, two additional variables
beyond those feeding the four LUTs are introduced. The output of an F5 multi-
plexer, can be any function of five variables or a restricted class of functions of up
to nine variables. The output of the F6 multiplexer can be any function of six vari-
ables or a restricted class of functions up to 19 variables. The F5 and F6 multiplex-
ers are included as a part of the Carry and Control Logic blocks in the two CLB
slices. 

Each CLB slice contains two storage elements that can be configured to be
either edge-triggered D flip-flops or a level-sensitive latches. The D inputs are
driven by the respective outputs of the Carry and Control Logic blocks. These out-
puts can be selected from a number of sources by multiplexers within the Carry
and Control Logic blocks. In addition to shared Clock and Clock Enable signals,
shared signals SR and BY are available for synchronous sets and resets. SR forces
the storage element into the initialization state corresponding to the specified con-
figuration and BY forces it into the opposite state if specified by the configuration.

LUT

LUT

MUXF5

MUXF6

LUT

Slice

Slice

CLB

LUT

MUXF5

FIGURE 4
F5 and F6 Multiplexers (Adapted with Permission of Xilinx, Inc.)



7

It is also possible to configure the storage element to provide asynchronous sets
and resets using these signals. All of the storage element control inputs can be con-
figured to be inverted or not. 

There are seven outputs from a CLB slice, X, XB, XQ, Y, YB, YQ, and
COUT. All of these outputs come from multiplexers in the Carry and Control
Logic blocks fed by multiple sources. All of the outputs except for XQ and YQ are
combinational functions of the inputs. XQ and YQ are storage element outputs. F5
is an additional slice output, used internally to feed the other CLB slice input F5IN
and is not a CLB output. Instead the value of the two F5 multiplexers can be con-
figured to appear on X and Y outputs, and the value of the F6 output can be con-
figured to appear on the Y output. 

The LUTs can alternatively be used as RAM. With the utilization of write
logic, each LUT implements 16 1-bit words of SRAM. Two LUTs within a slice can
be combined to give a 16 2-bit word synchronous SRAM, a 32 1-bit word synchro-
nous SRAM, or a 16 1-bit word dual-port synchronous SRAM. Alternatively, an
LUT can form a 16-bit chain of flip-flops that can be used to shift data. 

INPUT/OUTPUT BLOCKS (IOB) The Xilinx IOB is also programmable and offers the
designer a number of choices. We will briefly sketch its primary features. To sim-
plify the explanation, we consider the output and input portions of the IOB sepa-
rately, as shown in Figure 5. A block labeled Electronic Interface Components lies
between the single I/O pin and output and input lines. This block contains many
features, a number of which are programmable, that govern electrical characteris-

Package Pin

D

CK

EC

SR
Q

D

CK

EC

SR
Q

D

CK

EC

SR
Q

I/O

Notes:
1. For some I/O standards.

Programmable
Input Buffer

Output Buffer

Programmable
Delay

OE

SR

O

OCE

I

ICE

IQ

CLK

TCE

T

TFF

OFF

IFF

Electronic
Interface

Components

Programmable

FIGURE 5
Sketch of Xilinx IOB Structure (Adapted with Permission of Xilinx, Inc.)



8

tics of the output and the sampling of the input value. The details of this block
require some understanding of electrical and electronic circuits and are beyond the
scope of our coverage. 

The output portion of the IOB can provide output data O from the interior
of the FPGA on the I/O pin. Alternatively, it can provide a stored value of output
data O from a flip-flop with output Q. A 3-state driver on the output allows the I/O
pin to be used as an input, an output, or an input/output. The control signal T for
the three-state driver has the same alternative output capabilities as the output
data signal O. 

In the input portion of the IOB, the signal at the I/O pin enters an input
buffer. The buffer output optionally passes through a programmable delay that
provides a zero hold time on the input to insure that it can be properly captured.
The output of the delay appears on input I to the FPGA interior and can be stored
in a flip-flop with input IQ provided to the FPGA interior. 

Block RAM

The Spartan II contains several Block RAMs organized in two columns along the
left and right edges of the diagram in Figure 2. The number of Block RAMs per
column ranges from 4 to 36 depending on the size of the FPGA. Each Block RAM
contains 212 = 4,096 bits of storage and can be configured to have 2m words of 2n

bits with m + n = 12 and n ≤ 4. The Block RAMs are synchronous with a clock and
can be configured to be ROM or RAM and to have single or dual ports. A single
port RAM has just one set of control, address, and data inputs and one data out-
put. A dual port RAM has two sets of control, address, data inputs and data out-
puts for reading and writing data. In either case, the Block RAM is synchronized
with one or two clocks, and cannot be used directly as a combinational component. 

Interconnections

There are four major types of interconnections in the Spartan-II FPGA: 1) local
routing, 2) general-purpose routing, 3) global routing, and 4) VersaRing routing.
Local routing in the vicinity of a single CLB is shown in Figure 6. There are con-
nections within the CLB that connect the internal lookup tables (LUTs) and fast
direct connections to the CLBs to the left and right. Local routing connections lie
in both directions between each CLB and the General Routing Matrix (GRM) to
its upper left. A GRM provides connections between its CLB and the general-pur-
pose routing segments and between general-purpose routing segments attached to
the GRM. The general routing matrix is a switch matrix similar to that shown in
Figure 7(a). Where four segments meet, there are six pass transistors—one vertical,
one horizontal, and four on the diagonals. Each pass transistor is represented by a
green line. The connection between two segments is CLOSED for a 1 stored in the
SRAM cell driving the gate of the transistor. The connection between two seg-
ments is OPEN for a 0 stored in the SRAM cell. Several connections are shown in
Figure 7(b). Note that at point 1 all four segments are joined together by closing



9

three transistors. In this case, all six transistors could be closed to make a connec-
tion with less electrical resistance. At point 2, two distinct signal paths pass through
a single set of pass transistors. Wiring segments from the matrix inputs and outputs
extend across adjacent wiring channels. SRAM-controlled pass transistors lie at
selected intersections between these segments and perpendicular wiring segments
in the channels. The GRM connects to wiring segments in both horizontal and ver-
tical channels lying between the CLBs. Some of the segments are very long, span-
ning the entire length or width of the array. Other segments span a single CLB or
six CLBs. In addition to the wiring segments connected together by GRMs, there
are global routing interconnections for clocks and, from each CLB, two 3-state
buffers as inputs to some of the horizontal lines. 

CLB

GRM

To
Adjacent

GRM
To Adjacent
GRM

Direct
Connection
To Adjacent
CLB

To Adjacent
GRM

To Adjacent
GRM

Direct Connection
To Adjacent

CLB

FIGURE 6
Spartan-II Local Routing (Adapted with Permission of Xilinx®, Inc.)

(b) Examples of Connections(a) Switch Matrix Transistors

1

2

FIGURE 7
Example of Xilinx Switch Matrix (Adapted with Permission of Xilinx, Inc.)



10

Design Methodology

The overall structure of the interconnections, CLBs, and IOBs, and Block RAM is
clearly quite complicated. A designer having to deal with hundreds of CLBs and
IOBs and thousands of interconnection points in such an FPGA would have a very
difficult job. As a consequence, CAD tools are provided that take a design in the
form of a schematic or HDL description, automatically partition the design into
pieces that fit within a CLB, place the pieces into specific CLBs and route the con-
nections between the CLBs, and to and from IOBs. The end result of this process is
thousands of bits of programming information that can be loaded into the FPGA
to implement the desired logic.

APPENDIX: CONCEPTS FOR UNDERSTANDING VLSI PLDS

This appendix provides an overview of concepts provided after Chapter 3 of the
text that are needed for a basic understanding of VLSI PLDs. The concepts to be
overviewed include:

1) multiplexers, (Chapter 4),
2) arithmetic circuits, (Chapter 5),
3) latches, clocks, and flip-flops (Chapter 6), and
4) SRAMs (Static Random Access Memories) (Chapter 9).

These concepts are covered in detail in the chapter listed in parentheses. If you
have already studied a chapter listed, then you may skip the corresponding over-
view on that material in this appendix. In general, the overviews give an external
view of the object rather than the detailed views of internal construction given in
the regular text chapters. 

Multiplexers

Within VLSI programmable logic, it is useful to be able to select the values on an
output from among a set of different information inputs. The circuit which per-
forms a selection operation is a multiplexer. In general, a multiplexer with m infor-
mation inputs requires n selection signals (with 2n ≤ m < 2n+ 1) to select the
information input to connect to its output. Two multiplexer examples are shown in
Figure 8. The multiplexer in Figure 8(a) has two information inputs, requiring one
selection signal S. For S = 0, information on input 0 is selected, and for S = 1, infor-
mation on input 1 is selected. The multiplexer in Figure 8(b), has four information
inputs, 0 through 3, requiring two selection signals S1 and S0. An accompanying
table shows the input, I0 through I3, selected for each of the combinations on (S1,
S0). 

A detailed discussion of multiplexers and their implementation is given in
Chapter 4. 



11

Arithmetic Circuits

Arithmetic operations such as addition, subtraction, and counting are frequently
performed within VLSI PLDs. These operations can be implemented by the pro-
grammable logic blocks provided. Unfortunately, such an approach leads to long
propagation delays for a large number of operand bits (for example, 16 to 64 bits).
In this section, we will discuss the origin of this delay and give an overview of the
approach used to reduce it in VLSI PLDs. 

To illustrate the delay problem, we consider an addition of two n-bit oper-
ands A and B to form a sum S. One way of implementing this operation is to build
a hierarchical circuit made of interconnected subcircuits, using one such subcircuit
for performing addition in each of the bit positions of the operands. This subcircuit,
with the symbol shown in Figure 9(a), is called a full adder. Its inputs are Ai and Bi,
the ith bit of the respective operands A and B. In addition, there is a carry input Ci
that receives the carry output from the full adder to its right. The outputs are the
ith bit, Si, of the sum S, and carry output Ci+1 that provides the carry input to the
full adder on its left. The full adder can be implemented by one (or two) program-
mable logic block(s). 

0

1
S

Y

0

1

S1

Y
2

3
S0

(a) (b)

FIGURE 8
Multiplexer Examples: (a) a multiplexer with two information inputs; (b) a 
multiplexer with four information inputs

S1 S0 Y
0 0 I0
0 1 I1
1 0 I2
1 1 I3

(a) (b)

Ai 

Ci

Bi

Ci + 1

Si

An Bn

Sn

Cn Cn−1 C0C1C2

S0S1

A1 B1 A0 B0

FIGURE 9
Adder circuits: (a) the symbol for a full adder; (b) an n-bit ripple carry adder



12

In Figure 9(b), n full adders have been connect carry out to carry in to form
an n-bit adder referred to as a ripple carry adder. For simplicity in our discussion,
we assume that the worst case propagation delay path through this full adder cir-
cuit runs from carry input C0 to carry output Cn. For a propagation delay from Ci
to Ci+1 of tcc, the worst case propagation delay for adding two n bit operands A and
B is n × tcc which grows in proportion to the number of bits n in A and B. In VLSI
PLDs, the delay is even longer since the carry connections must pass from logic
block to logic block through programmable interconnects which add additional
delays ti that vary depending on the physical location of each pair of connected
logic blocks within the PLD. This increases the worst case adder propagation delay
to:

For large n, this delay is too high for many applications. As a consequence,
this approach to implementing addition and other similar arithmetic functions is
not used in VLSI PLDs. Instead, logic specifically dedicated to handling the carry
function is employed. This dedicated logic accomplishes two goals. It replaces the
variable time delays ti contributed by the programmable interconnections with
fixed connections with insignificant delay. Also, it replaces the programmable logic
blocks with faster fixed logic in implementing most of the carry logic. By use of
these techniques, this dedicated logic substantially reduces the carry delay and
speeds up the arithmetic operations performed in the VLSI PLDs discussed in this
supplement.

Latches, Clocks, and Flip-flops

The programmable logic blocks used in VLSI PLDs require storage elements. In
addition, because of the nature of logic implementation in the technologies used,
the design process becomes tractable only with the use of a clock to provide syn-
chronous operation. In this section, we introduce the concepts of latches, clocks,
and flip-flops to satisfy the storage element needs in VLSI PLDs.

THE D LATCH A latch is a basic circuit that stores a single bit of information. A
symbol for a D latch is shown in Figure 10(a). The D latch has a data input D, a

n tcc ti

1

n 1–

∑+×

FIGURE 10
D Latch and D Flip-flop Symbols

D 

C

Q D 

C

Q D 

C

Q

R

S 

(a) (b) (c)



13

control input C, and an output Q. For the control input C = 0, the Q provides the
value stored which is fixed until C becomes 1. For the control input C = 1, Q fol-
lows the value appearing on D (after a propagation delay) until C become 0. From
this behavior, it is apparent that control input C controls whether the value on D is
being “loaded” into the latch, or the latch is storing a value that previously was
“loaded” from input D. By alternating the value on C between 1 and 0, and apply-
ing a value to be stored on D during the interval when C is equal to 1, the D latch
acts as a storage element. 

If the alternating signal applied to C is periodic, it is referred to as a clock.
The use of a clock provides a mechanism to control the times at which a set of D-
latches is loaded. A circuit that uses a clock to synchronize its storage elements is
referred to as a synchronous circuit. Knowing the interval of time between the
loading of the storage elements in a synchronous circuit makes the design of the
circuit considerably easier. As a consequence, most VLSI PLDs use a synchronous
design technique. 

• EXAMPLE 1 Synchronous Operation of a D Latch

In Figure 11, the operation of the D Latch from Figure 10 using a periodic clock
Clock is shown in the waveforms which are plots of signal values along a time axis.
It is assumed that the latch initially contains 0 before the first clock pulse (C = 1).
The following observations can be made:

1) for the first two clock pulses, D is a 1 or 0 throughout the clock pulse, and
Q assumes the value on D a propagation delay after Clock goes to 1 and remains
there while Clock = 0.

2) for the second two clock pulses, D changes while Clock = 1, and after a
propagation delay, Q takes on the value(s) on D with a propagation delay. When
Clock changes to 0, the value on Q remains at the last value on D before Clock
changes to 0.

3) for fifth clock pulse, with a change in D too close to the time at which
Clock changes to 0, the stored value on Q can be become either 0 or 1, arbitrarily.

•

CLOCKED BEHAVIOR IN A SYNCHRONOUS CIRCUIT The behavior illustrated in case 2
in Example 1 unfortunately becomes problematic in the operation of a synchro-
nous circuit with a single clock as illustrated in Example 2. 

Clock

D

Q

FIGURE 11
Waveforms for Example 1



14

• EXAMPLE 2 Synchronous Operation of a Circuit with Two D Latches

In Figure 12, the operation of a circuit containing two D latches, L1 and L2 with
the output Q of latch L1 connected to the input D of latch L2 is illustrated. It is
assumed that both latches initially contain 0 before the first clock pulse (Clock =
1). The following observations can be made:

1) With a D = 1 applied to its input, the value 1 is loaded into and stored in
latch L1 as expected. 

2)  Initially, the value D = 0 applied to the latch L2, the value 0 remains in L2.
But when the output of latch L1 becomes 1, the value D = 1 is applied to latch L2
and its stored value (after a propagation delay) changes to 1. •

The behavior in case 1 of Example 2 is correct, but what about the behavior
in case 2? In order to decide whether or not this is correct, suppose that the circuit
is extended to contain L3, L4, ..., Ln, with n large. How far down this chain of
latches does the stored value in the latches change to 1? Since the 1 propagates
down the chain until Clock changes to 0, and it takes a propagation delay for the
value to propagate through each latch, the last of the flip-flops to change to 1 is
determined by the length of time Clock is at 1 and the propagation delay of the
latches. Clearly, we do not want the resulting values stored in the latches to depend
on two timing values! So, by definition, in a synchronous circuit, for the application
of a clock pulse, a difference between the value on D and the stored value on Q for
a latch is to propagate only through that latch and not through other latches in the
circuit. The only way that this can be achieved is by controlling delay values in the
circuit so that a change in the output of a latch cannot reach another latch before
the clock changes from 1 to 0. This kind of detailed timing control is difficult at
best and, in a VLSI PLD with propagation delays associated with the intercon-
nects, impossible. Thus, a different approach to storage is needed. 

THE D FLIP-FLOP The solution to the clocked behavior problem just described is
replacement of each D latch with a D flip-flop, a more complex circuit having the
symbol shown in Figure 10 (b). Instead of responding, with a change in output Q
dictated by an opposite value on D, to the presence of a clock pulse on C, the D

Clock

DL1

DL2 = QL1

QL2

FIGURE 12
Waveforms for Example 2



15

flip-flop responds instead to a clock edge on C. In this case, it responds to a change
from 0 to 1 on its input, called a positive edge. Example 3 illustrates how this solves
the problem with clocked latch behavior illustrated in Example 2. 

• EXAMPLE 3 Synchronous Operation of a Circuit with Two D Flip-flops

In Figure 13, the operation of a circuit replacing the two D latches in Example 2,
D1 and D2, with two D flip-flops is illustrated. It is assumed that both flip-flops ini-
tially contain 0 before the first clock pulse (Clock = 1). The following observations
can be made:

1) With a D = 1 applied to its input, the value 1 is loaded into and stored in
flip-flop D1 as expected in response to the positive edge on C when Clock changes
from 0 to 1. 

2)  The value D = 0 applied to the flip-flop D2 is loaded into D2 in response
to the positive edge on C when Clock changes from 0 to 1. The change in the value
of C on D2 to 1 due to the change of the output Q of flip-flop D1 is delayed until
after the positive edge by the propagation delay of flip-flop D1. As a consequence,
the change on input D of D2 is not “seen” for the current clock pulse since the
edge has already occurred. As a consequence, the stored value in D2 remains at 0
which is correct since the change propagates only through flip-flop D1. •

Returning to Example 1, case 3, the D value on the latch input changes too
close to the change of control input C from 1 to 0 causing the value stored to be
indeterminate. The same thing happens for a flip-flop triggered by an edge. As a
consequence, D must become fixed at the value to be stored in a flip-flop a time
interval before the positive edge called the setup time. It must also be held at the
value to be stored for a time interval after the positive edge called the hold time.
For many modern flip-flop designs, the hold time is often zero. 

Our final coverage in the section deals with the flip-flop shown in Figure
10(c). The is a positive-edge triggered D flip-flop with two additional input S and
R. Output changes in response to these inputs demonstrate a latch behavior and
are entirely independent of the clock. Further, they have precedence over any
edge-triggered changes. S acts as a signal that sets the stored value Q to 1 and R

Clock

DF1

DF2 = QF1

QF2

FIGURE 13
Waveforms for Example 3



16

acts as a signal that resets the stored value Q to 0. Thus, regardless of the values on
D and C:

1)If S = 1 and R = 0, Q becomes 1, and
2)If S = 0 and R = 1, Q becomes 0.

If S = R = 0, then the value of Q is determined by the behavior of C and D, and S =
R = 1 is a forbidden input combination. 

SRAMs

Conceptually, a memory is a two-dimensional array of storage elements each of
which stores the value of a single bit. Figure 14(a) represents a memory containing
n elements per row and 2m elements per column. A specific memory with n = 4 and
m = 3 is shown in Figure 14(b). Example values are shown as the contents of this
memory. The memory is conceptually viewed as storing information in the rows.
The contents of a row is referred to as a word. In order to access a word in the
memory, the address of the word must be applied to the memory. The address of a
word is the number associated with the position of the row in the memory in which
the word is stored. These positions are numbered 0 through 2m − 1. In Figure 14(b),
address 0 applies to the top word and address 2m − 1 = 7 applies to the bottom
word. 

The memory has two basic modes of operation, read and write, controlled by
one or more memory control signals. Associated with these memory operations are

Address

Data Out

Data In

WR

m

n

n

Address

Data Out

Data In

WR

3

4

4

0 100

0 010

0 001

1 000

1 010

0 101

1 010

0 101

2m × n

Memory

(a) (b)

FIGURE 14
A Generic Memory Example



17

inputs and outputs on the memory called the Address, Input, and Output ports. In
addition, we assume that a memory has a single control signal, WR. If WR is equal
to 1, the memory operation is a write, and if WR = 0, the memory operation is a
read. For a read operation, with WR = 0, the word that appears on the Output of
the memory is the contents of the row selected by the address value applied to the
Address input. For a write operation, with WR = 1, the word applied to the Input
of the memory replaces the contents of the location selected by the address value
applied to the Address input. 

• EXAMPLE 4 Read and Write Operations

This example illustrates read and write operations using the memory example in
Figure 14. 

Suppose that a read operation on the memory with the contents shown in
Figure 14(b) is to be performed from address 5 (101). The address 101 is applied to
the Address input and 0 is applied to the WR input. After a time delay, called the
access time, the value of location 5, 1010, appears on the Data Output. 

Next, suppose that a write operation on the memory with the contents shown
in Figure 14(b) is to be performed. This operation is to write the word 0111 into the
address 2 (010). First, the address 010 is applied to the Address input and 0 is
applied to the WR input. After a specified time, called the address setup time, WR
is changed to 1. Then the word to be written, 0111, is applied to the Data Input.
After both the data setup time from application of the word and the minimum write
pulse width time after the change to 1 in WR, WR can be changed to 0, completing
the write operation of word 0111 into address 010. Finally, after the address hold
time has elapsed, the address can be changed, if desired. Likewise, the word
applied to the Data Input can be changed after the data hold time. The various
times specified in this example are necessary to insure that the word is written cor-
rectly into the addressed location and that the words stored in other locations are
not disturbed during the write operation. •

With this introduction to memories and their operation, SRAM can now be
defined. First of all, RAM is an abbreviation for random access memory. A ran-
dom access memory is a memory with the property that the access time for a word
is the same regardless of the location addressed. SRAM is an abbreviation for
static RAM. This is an integrated circuit RAM that will retain its stored informa-
tion as long as the power is applied. In contrast, DRAM (Dynamic RAM) will lose
its stored information after a few milliseconds unless the information is (typically
internally) read and restored.

The memory we illustrated in Figure 14 is a single-port SRAM since it has just
one set of address, data, and control input and a single data output. In Figure 15,
the single port RAM is contrasted with a dual-port SRAM. The-dual port SRAM
has two sets of inputs and of outputs, permitting a pair of reads, a read and a write,
or a pair of writes to be performed concurrently. For a pair of writes, the write
addresses must be different. Also, if a write is occurring to a given location, a con-
current read from that location may not give a correct result. 



18

REFERENCES

1. Xilinx, Inc., Spartan-II 2.5 V FPGA Family Complete Data Sheet, DS001, 
September 3, 2003 (http://direct.xilinx.com/bvdocs/publications/ds001.pdf).

2. Xilinx, Inc., Spartan-IIE 1.8 V FPGA Family Complete Data Sheet, DS077, 
July 9, 2003 (http://direct.xilinx.com/bvdocs/publications/ds077.pdf).

Address

Data Out

WR

m

n

n

2m × n

Memory

(a)

Address 1

Data Out 1

WR 1

m

n

n

2m × n

Memory

(b)

Data In Data In 1 Data In 2
n

Data Out 2

n

Address 2

WR 2

m

FIGURE 15
Single-Port and Dual-Port Memory Symbols


