Experiment 5

Develop a 4 bit adder/subtractor by augmenting a 4 bit binary adder and then, augmenting the adder/subtractor to yield a 4 bit magnitude comparator. The comparator has two 4 -bit inputs ($\mathrm{A}=\mathrm{A} 1$ through A 4 with A 1 the MSB and $\mathrm{B}=\mathrm{B} 1$ through B 4 with B 1 the MSB) and and three 1-bit outputs x, y, z. The comparator outputs are derived from the outputs of the subtraction $A-B$ as follows. If ($A-B$) is equal to zero then $A=B$; assert x and deassert y and z. If ($A-B$) yields no carry-out (borrow) then $A<B$; assert y and deassert x and z. If ($A-B$) is not equal to zero and the subtraction yields a carry-out (borrow) then $\mathrm{A}>\mathrm{B}$; assert z and deassert x and y . Note, the comparator outputs are active high.

Task: Design a 4-bit comparator.
Deliverable (D1): Annotated logic schematic for the comparator. Note, use adder's logic symbol in your schematic.

Task: Develop a structural Verilog model of the comparator using the Verilog models for the TTL ICs SN7486, SN7404, SN7408 and SN7483.

Deliverable (D2): Electronic submission of source code (make submit).
Task: Map your Verilog model to a TTL-based physical design for the combinational system.
Deliverable (D3): IC logic schematic.
Task: Specify IC interconnections.
Deliverable (D4): One completed pin-out sheet (at least) for each IC employed in your physical design.

Task: In the laboratory, wire-up your physical design, verify its behaviour and sign-off on the design/implementation.

Deliverable (D5): A physical realization of the combinational system that behaves to specifi-
cation. Details of the circuit-verification process. Student signature indicating that the circuit behaves as specified.

Task: Document any relevant results, explanations or comments.
Deliverable (D6): A section in your report entitled Results/Explanations/Comments in which you have detailed any relevant results, explanations or comments.

NOTES

