

Dynamic (heap) memory and pointers

● many times we do not know how much data we'll need to store
until the program is already running
● if we try to pick a fixed size we run the risk of either it being too
small (so the program can't do its job) or of being way too big and
wasting memory resources
● dynamic memory allocation refers to programs requesting
memory as the program runs, then releasing that space once they
no longer need it
● these requests are allocated from the “heap” space, and their
locations in memory are tracked through pointers

Dynamic array allocation

● one of the most common uses of dynamic allocation is to
allocate arrays of just the right size
– as the program runs we determine what the “right” size is, then

request an array of exactly the right size
– if the request is granted we are given back a pointer to its

location in memory

– we use the array (through the pointer) for as long as it is
needed

– when finished we deallocate the array

Array allocation/deallocation

#include <iostream>
using namespace std;

int main()
{
 int size;
 cout << “Enter the desired array size”;
 cin >> size; // error checking needed

 // request space for size doubles using new
 double* arr = new double[size];
 if (arr == NULL) {
 cout << “Not enough memory”;
 }

 else {
 // use the array normally, e.g.
 for (int i = 0; i < size; i++) {
 cin >> arr[i];
 }

 // delete when done
 delete [] arr;
 }
}

Notes about new and delete

● new returns NULL if it cannot fulfill the request
– not enough memory for your request
– you passed 0 or a negative size to new

● NULL indicates an invalid/unusable memory address
● after calling new always make sure you check for NULL to

see if it worked or not!
● once you're totally done with the dynamically-allocated

array use delete [] to free up the memory (the [] are used
when deallocating arrays)

Functions returning points

● sometimes we use a function to carry out the allocation and
return the pointer to the new array, e.g.

// try to allocate an array of the given size
// return the resulting pointer
int* allocArrInt(int size)
{
 int *ptr = NULL;
 if (size > 0) {
 int *ptr = new int[size];
 if (ptr == NULL) {
 cout << “Insufficient memory” << endl;
 }
 } else {
 cout << “Invalid array size” << endl;
 }
 return ptr;
}

int main()
{
 int arrsize = 0;
 cout << “Enter the desired array size”;
 cin >> arrsize;
 int* array = allocArrInt(arrsize);
 if (array != NULL) {
 // use the array normally,
 //
 // but delete it when you're done
 delete [] array;
 }
}

Passing pointers by reference

● we can even have the function take the pointer as a pass by
reference parameter, and return a bool specifying whether the
allocation succeeded or failed

bool allocate(int* &arr, int size)
{
 if (size > 0) {
 arr = new int[size];
 } else {
 arr = NULL;
 }
 if (arr == NULL) {
 return false;
 }
 return true;
}

int main()
{
 int *array = NULL;
 int size;
 cin >> size;
 if (allocate(array, arrsize)) {
 //.... use array normally then delete
 delete [] array;
 } else {
 cout << “Allocation failed” << endl;
 }
}

Dynamically allocating 2d array

● if we want to dynamically allocate a 2d array, we
dynamically allocate an array of pointers for the rows, then
go through each row and dynamically allocate a pointer for
the columns in that row, e.g.

int rows, cols;
float **array2d;

cout << “Enter num rows and cols”;
cin >> rows >> cols;
// alloc array of ptrs for the indiv rows
array2d = new (float*)[rows];
if (array2d == NULL) {
 cout << “Alloc of rows failed”;
}

else {
 for (int r = 0; r < rows; r++) {
 // alloc the array of floats for the current row
 array2d[r] = new float[cols];
 if (array2d[r] == NULL) {
 cout << “Alloc failed for row “ << r << endl;
 }
 }
}

Deallocating dynamic 2d array

● must deallocate the individual arrays of floats first, then the
array of pointers

● remember to check for nulls first, calling delete [] on a null
pointer can cause a crash

if (array2d != NULL) {
 for (int r = 0; r < rows; r++) {
 // delete the current row of floats (if it isn't NULL already)
 if (array2d[r] != NULL) {
 delete [] array2d[r];
 }
 }
 // delete the array of pointers
 delete [] array2d;
}

Dynamic data structures

● another form of dynamic allocation comes into play when
we need to incrementally add new items to data storage as
the program goes along
– e.g. we have a system that queues and processes requests for

ticket purchases online: as each new request comes in we
allocate space for it and add it to the queue, and as we process
them we remove them from the queue (and deallocate them
after processing)

● we'll consider two specific dynamic data structures shortly:
linked lists and trees

Common pointer bugs

● pointer bugs can lead to many odd program crashes
– wild pointers: using an uninitialized pointer variable, that could

thus point anywhere

– null pointers: dereferencing a pointer that has been set to null,
always causes a crash (as does trying to delete a null pointer)

– dangling pointers: dereferencing a pointer after we have
deleted the memory it points to, the memory could now be in
use for something else

– memory leaks: forgetting to delete dynamically allocated
memory before we use the pointer for something else

Buggy examples

● wild pointer
 int x;

 int* iptr; // uninitialized, could point anywhere

 x = (*iptr);

● trying to delete a null pointer
 iptr = NULL;

 delete [] iptr; // crash

● dereferencing null pointer
 iptr = NULL;

 x = (*iptr); // crash

More buggy examples

● dangling pointer
 int* arr = new int[10];

 // does stuff with arr

 delete [] arr;

 cout << arr[i]; // arr could already have been reallocated

● memory leak
 int *arr = new int[10];

 arr = NULL; // have lost all access to the allocated space

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

