

Intro to arrays

● so far all our data types have held simple, primitive values: single
integers, single real numbers, single characters, etc
● if we had to hold hundreds or thousands of separate values we
would need to declare variables for each: not very effective
● we'd like a way to declare collections of values, e.g. a collection
of 1000 student numbers, a collection of 100,000 temperatures we
measured over time, a collection of 17 item prices on a bill
● most programming languages support “arrays” as one means of
creating such collections

Arrays in C++

● to define an array in C++ we give three things:
– a name for the array

– the number of items it can hold

– the type of item it holds (e.g. int, float, etc)

 int myArray[200]; // myArray holds 200 ints

● the array is organized into positions, each acting as a storage
spot for one item

● when we want to access an item we specify the array name and
position, with the position in []

 x = arr[10]; // copy what's in position #10 into x

 arr[17] = 205; // store 205 in position #17

Array indexing and elements

● the values stored in the array are called elements, the
positions are called indices

● for an array of size N the positions are numbered 0..N-1
● for example, here we read values into all 5 positions then

print them out:
float values[5];
cout << “Enter 5 numbers” << endl;
cin >> values[0];
cin >> values[1];
cin >> values[2];
cin >> values[3];
cin >> values[4];

cout << “The five values were:” << endl;
cout << values[0];
cout << values[1];
cout << values[2];
cout << values[3];
cout << values[4];

Array sizes

● the size of an array must be a positive integer, and must
be a constant (or expression of constants), e.g.

 const int Size = 10;

 const int N = 3;

 int arrayOne[Size];

 int arrayTwo[N];

 int arrayThree[N * Size];

● (some compilers allow the use of variables for a size, but this isn't
universally supported, we'll look at alternatives later)

Array elements

● an array element (e.g. arr[3]) can be used anywhere that
its data type is valid: in expressions, passed as
parameters, etc

const int size = 10;

float arr[size];

cin >> arr[0]; // get and store first element, read from user

cin >> arr[1]; // get and store second element

arr[2] = arr[1] + arr[0]; // add two elements, store in third

arr[3] = pow(arr[2], arr[0]); // 4th is 3rd to power of 1st elem

Initializing array contents

● like variables, the contents of the array could be any values
until/unless we specifically store something

 int x;

 cout << x; // x could be any random integer

 int arr[3];

 cout << arr[0]; // again, could be any random integer

● we say the variables/array in such cases are uninitialized
● the first time we store a value in a variable or array position we

are initializing that variable/array element
● we always want to initialize items before attempting to use their

contents

Initializing arrays at declaration

● we can assign initial values to an array as part of the
declaration (this is the only place we can assign multiple
values to an array at once):

 int x[5] = { 10, 20, 30, 40, 50 };

● the number of elements inside the { } must match the size
of the array

● while sometimes handy for small arrays, this is impractical
for larger arrays

Setting variable values with loops

● We'll often use loops to process the contents of an array,
e.g. setting the value of every element (one at a time),
printing each element, updating each element, etc

// set every element in an array to value 101

const int size = 10;

float data[size];

// will use local variable pos to track current position

for (int pos=0; pos<size; pos++) {

 data[pos] = 101; // set value in current element

}

Get user data to fill array

const int ArrSize = 50;
double array[ArrSize];

// fill with user data
for (int p=0; p<ArrSize; p++) {
 cout << “Enter a number” << endl;
 cin >> array[p];
}

// print it all out again
for (int pos=0; pos<ArrSize; pos++) {
 cout << “The value in position “ << pos;
 cout << “ is “ << array[pos] << endl;
}

More array examples

More array examples

// still using our array from the previous slide

// compute the sum of all elements
float sum = 0;
for (int p=0; p<ArrSize; p++) {
 sum += array[p];
}
cout << “sum of all values is “ << sum << endl;

// find smallest element
float smallest = array[0]; // first is smallest so far
for (int pos=1; pos<ArrSize; pos++) {
 if (array[pos] < smallest) {
 smallest = array[pos]; // we've found a new smallest so far
 }
}
cout << “Smallest value is “ << smallest << endl;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

