

Input/output with printf/scanf

An introduction to basic i/o using the cstdio library
● printf for string literals
● embedding common data types in output (%f, %d, etc)
● formatting options with printf
● basic use of scanf with variables
● impact of whitespace on scanf
● reading formatted input with scanf
● printf and scanf return values

Basic printf for text output

● if the cstdio library has been included then the printf
routine is available for use

● printf displays text strings to standard output (generally the
terminal window the program is running in)
– printf(“this is output”);

● all printfs appear sequentially on screen
● special characters can be embedded in the string:

– \n for a newline, \t for a tab, \g for a bell, and many others

Embedding data values in printf
● to embed a variable (or constant, or expression) value

– we put a special marker in the string where the value is desired
(a % sign followed by a special designator character)

– we follow the text string with the value to be used

● formats: %d for integer values, %f for floating point, %c for
char, %ld for long ints, %lf for doubles, %s for text strings

 int x = 3;

 float y = 1.5;

 printf(“some integer %d\n”, x);

 printf(“some float %f\n”, y);

Padding printf output

● We can specify a minimum width (characters) for the item
we are displaying, as an integer after the %

 printf(“here is x: %5d\n”, x);

● if x is less than 5 characters wide it adds extra spaces
before displaying x, padding to width 5

● if x is 5 or more characters wide then it displays x normally

Formatting floats with printf

● for floats, we can specify both the overall width and the
number of digits to display after the decimal point

● printf(“%6.2f”, y);
● puts 2 digits after the decimal point, pads to total width of 6

characters (including the decimal point)
● %g can be used to autoformat floats: it drops any trailing

0's, e.g. 3.650000 comes out as 3.65, 3.000000 comes out
as 3, etc

Scanf to read values into variables

● scanf reads from standard input (generally the keyboard)
● it uses a format string to specify what kind of data is

expected (%d for int, %f for float, etc)
● the string is followed by the & sign and the variable to

store the value in
 scanf(“%d”, &x); // read an int into variable x

● scanfs read sequentially from the data entered, assuming
all data fields are whitespace delimited

● typed text is not available to scanf until enter has been hit

Whitespace and scanf

● scanf skips any leading whitespace (spaces, tabs,
newlines, etc) and starts reading when other characters
are encountered

● it reads characters as long as they are valid for the input
type, stopping when the next whitespace is encountered or
the next character is invalid for the expected data type

 int i;

 scanf(“%d”, &i);

● skips whitespace, reads digits into variable i, stops when it
sees something that isn't a digit

Formatted scanf input

● scanf strings can read multiple variables, and can include
text that is expected but is not to be stored, e.g.

 scanf(“%d-%d”, &x, &y);

– reads an integer into x
– reads and skips a '-' character

– reads an integer into y

● scanf stops if a specific character (e.g. the '-') is expected
but not found

printf and scanf return values

● printf returns a value, a count of the total number of
characters printed to standard output

 int x = 470;

 int charCount;

 charCount = printf(“x is %d\n”, x);

● charCount is 9 (counting spaces, newlines, 3 for the 470)
● scanf similarly returns a value, a count of the number of

characters read from standard input

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

