

Data and computation in C++

Assuming we know the rough structure of C++ programs, let's
introduce the basics of data and computation
● data storage (constants and variables)
● data types (integers, reals, characters)
● size limits on data types
● the assignment operator
● literal (“hard-coded”) values in source code
● basic math operations and computation in C++

Data storage (variables)

● any data a program works with must be stored somewhere
● often the specific value to be used is unknown before the

program starts, or changes as the program runs
● in our programs we can specify a name for a storage

location, and the kind of data we will store there
● these named locations are referred to as variables (since

their content can vary over time)

Declaring variables

● We must declare a variable before we can use it
● this involves specifying what kind of data it can hold, as

well as the variable name
● e.g. for a variable named “age” that can hold integer (int)

data, a valid declaration would be

 int age;

● similarly, for a variable named “temperature” that can hold
floating point data (float), a valid declaration would be

 float temperature;

Assigning values to variables

● The = symbol represents the assignment operator in C++
● It is used to set/change the value stored in a variable,

using the syntax
 variablename = newvalue ;

● the new value may simply be a literal (hard-coded) value,
e.g. 23, or it may be a complex expression

 x = (3 + (7 - (y / z)) * 10;

● we can assign values as part of a variable declaration
 int somevariable = 5;

Basic computation

● the usual math operations are supported (+, -, *, /) with
typical order of operation rules and support for bracketing

● instructions are processed in sequence, always using the
most recent value for a variable

int x = 3; // x has value 3

int y; // y has no value yet

y = 10 + x; // stores 10+3, i.e. 13, in y

x = x + 1; // computes right side, x + 1 is 4, then

 // assigns to the variable on the left

int z = 5 * x; // uses latest value of x, so z = 20

The importance of initialization

● a variable has no value until one is assigned
● until that point, the value of the variable could be anything
 int x;

 int y = x; // we're using uninitialized variable x

 // we really don't know what is in either variable

● compilers will often generate warning messages when
they see you are using a potentially uninitialized variable

Basic data types (char, int, float)

● There are many different data types
● first, we'll introduce three types

– int: for storing integers (whole numbers)

– float: for storing floating point values (real numbers)

– char: for storing single characters (e.g. 'x' or 'X' or '?')

● We'll introduce more complex data types as the course
progresses

Size limits of data types

● Each data type has a fixed amount of space allocated for it
in computer memory

 (on our system, 1 byte for a char, 4 for an int, 4 for a float)
● This means only a limited “size” of value can be stored

 (on our system, the largest int is 214783647,

 the largest float is 3.40282 x 1038)

Literal values and their downside

● We can code specific int, float, or char values directly into
our C++ programs, e.g.

 circumf = 3.1415 * diameter;

● these values (like 3.1415 above) are called literal values
● downside for maintainability:

– if we use the same literal value multiple times in a program then
later decide we need to change the value, we must find and
correctly edit each instance of it (without accidentally changing
anything else)

Constants, why they're useful

● instead of using these fixed, or constant, literal values
(often called “magic numbers” by programmers), we can
give the value a name and use that instead

● const float Pi = 3.1415;
● now we can use the value by name
 circumf = Pi * diameter;

● this makes our code more readable and maintainable

Mixing data types in assignment

● if we assign an integer value to a floating point variable,
the results are generally intuitive

 float x = 3; // x will hold 3.0

● if we assign a (small enough) floating point value to an
integer, the results will be truncated

 int y = 2.9; // y will hold 2

Mixing data types in operations

● when the compiler sees an expression like “x + y”, the
compiler must decide what kind of addition to use (most
computer chips have different circuitry to add integers than
 to add floating point values)

● if x and y are both integers then it uses integer addition,
but if one or both are floats then it uses floating point
addition

● 3 + 10 gives an integer result, 13
● 3.0 + 10 gives a floating point result, 13.0

int versus float division

● integer division in C++ drops any remainder
– 7 / 3 gives 2 (dropping the remainder, 1)
– 6 / 11 gives 0 (dropping the remainder, 6)

● floating point division computes the full result
– 3.0/4 gives 0.75

● if you wish to know the remainder in integer division you
must use the modulo (%) operator
– 7 % 3 gives 1
– 6 % 11 gives 6

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

