

Linked list implementation

What we're trying to create:
● suppose we want to maintain a list of circles in a 2d plane, each
having x and y coordinates and a radius (all real numbers)
● we want to keep the circles in the order they were entered
● the list of circles could grow to any size
● we want to be able to add a circle
● we want to be able to print all the circles in a specific size range,
e.g. all the circles with radius between 10 and 15, or between 0.5
and 1.6, etc

Chosen implementation approach

● we look at the requirements, and choose a linked list
approach since
– the number of circles could vary tremendously (not good for an

array approach)

– we don't need to find circles by their position in the list (which
would have been slow in a linked list approach)

Identify needed data and functions

● our struct will need real numbers for x, y, and radius, plus a
pointer for the next circle in the list

● our program will need to keep pointers for the first and last
circles in the list

● we'll want functions to
– create a new circle with given x,y,radius values

– insert the new circle at the back of the list
– search from the front of the list, printing all circles in a given

radius (between passed rMin and rMax values)

Set data types and function profiles

● decide on the names and types for our circle struct
struct Circle { double x, y, radius; Circle *next; };

● decide on the names, parameter lists and return types for
our functions

// allocate new circle with given stats, return pointer to it

Circle* create(double x, double y, double r);

// insert at back, update back ptr, return true iff successful

bool insert(Circle* &back, Circle *newcirc);

// search forward from front, printing all

// circles found with radius between minRand and maxRad

void search(Circle* front, double minRad, double maxRad);

Identify supporting functions/data

● we'll need some way to get commands from the user and
either insert, search, or quit based on the command
– possibly constants for the three command types

– a function to get/return the user's next command
const char Quit = 'Q';
const char Insert = 'I';
const char Search = 'S';

// prompt the user and get their chosen command,
// repeating until a valid command is obtained
// return the valid command
char getCommand();

Support functions continued

● we'll need a function to deallocate the list when done
 void deallocate(Circle* &front);

● we'll need some way to get three numeric values from the
user to pass to the create function
– a function to get/return a positive number

// display the prompt and read the user's value
// repeating until a positive number is provided
// return the final value
double getNumber(string prompt);

Implement incrementally

● implement one step at a time, compile and test after each

– create skeletal versions of struct, functions, main

– set up the main routine to use the functions

– implement the processCommand routine

– implement the getCommand routine

– implement the getNumber routine

– implement the create routine

– implement the insert routine

– implement the search routine

– implement the deallocate routine

The definitions and prototypes

#include <iostream>
using namespace std;

struct Circle {
 double x, y, radius;
 Circle *next;
};

const char Quit = 'Q';
const char Insert = 'I';
const char Search = 'S';

Circle* create(double x, double y, double r);
bool insert(Circle* &front, Circle* &back, Circle *newcirc);
void search(Circle* front, double minRad, double maxRad);
char getCommand();
double getNumber(string prompt);
void deallocate(Circle* &front);

// main and the full function implementations will go below here

Skeletal main and functions

// initially just the bare minimum to get them to compile

int main() { }

Circle* create(double x, double y, double r) { return NULL; }

bool insert(Circle* &f, Circle* &b, Circle *newcirc) { return false; }

void search(Circle* front, double minRad, double maxRad) { }

char getCommand() { return Quit; }

double getNumber(string prompt) { return 0; }

void deallocate(Circle* &front) { }

Completing main

int main()
{
 Circle *front = NULL;
 Circle *back = NULL;
 char cmd;
 do {
 cmd = getCommand();
 // handle inserts
 if (cmd == Insert) {
 double x, y, r;
 x = getNumber(“Enter x:”);
 y = getNumber(“Enter y:”);
 r = getNumber(“Enter radius:”);
 Circle* tmp = create(x,y,r);
 if (tmp != NULL) {
 insert(front, back, tmp);
 }
 }

 // handle searches
 else if (cmd == Search) {
 double min, max;
 min = getNumber(“Enter min radius:”;
 max = getNumber(“Enter max radius:”;
 search(front, min, max);
 }
 } while (cmd != Quit);

 deallocate(front);
 return 0; // end of main
}

Completing getCommand

// typical prompt and read until they give a valid response
char getCommand()
{
 cout << “Enter “ << Insert << “ to insert,” << endl;
 cout << “ or “ << Search << “ to search,” << endl;
 cout << “ or “ << Quit << “ to quit,” << endl;
 char cmd;
 cin >> cmd;
 cmd = toupper(cmd);
 switch (cmd) {
 case Insert:
 case Quit:
 case Search:
 return cmd;
 default:
 cout << “That was an invalid command, “;
 cout << “please try again” << endl;
 return getCommand();
 }
}

Completing getNumber

// usual recursive get-a-number, fllushing buffer on garbage
double getNumber(string prompt)
{
 const int LineLen = 80; // max num input chars to clear
 cout << prompt << endl;
 double num;
 cin >> num;
 if (cin.fail()) {
 cin.clear();
 cin.ignore(LineLen, '\n');
 cout << “That was not a number, please try again” << endl;
 num = getNumber(prompt);
 }
 return num;
}

Completing create

Circle* create(double x, double y, double r)
{
 // create the new circle and make sure new worked
 Circle* newcirc = new Circle;
 if (newcirc != NULL) {
 // set all the field values
 newcirc->x = x;
 newcirc->y = y;
 newcirc->radius = r;
 newcirc->next = NULL;
 }
 // return the pointer to the “filled in” new circle
 return newcirc;
}

Completing insert

bool insert(Circle* &front, Circle* &back, Circle *newcirc)
{
 if (newcirc == NULL) {
 // we were given a non-existent circle to insert
 return false;
 } else if (front == NULL) {
 // this is the first and only item in the list so far,
 // so we need to update front and back to refer to it
 front = newcirc;
 back = newcirc;
 return true;
 } else {
 // this isn't the first item,
 // so we just need to update back
 back->next = newcirc; // old back item knows new one comes next
 back = newcirc; // back knows the new item is now the last
 return true;
 }
}

Completing search

void search(Circle* front, double minRad, double maxRad)
{
 // go from front of list to back, one item at a time
 // NULL means we've hit end of list
 Circle* current = front;

 while (current != NULL) {
 // check the circle radius against the min/max we were given
 if ((current->radius >= minRad) && (current->radius <= maxRad)) {
 // found one! print the current circle
 cout << “(“ << curr->x << “,” << curr->y << “):”;
 cout << curr->radius << endl;
 }
 }
}

Completing deallocate

void deallocate(Circle* &front)
{
 // delete one item at a time until hit the end of list
 while (front != NULL) {
 // remember the one to be deleted
 Circle* victim = front;
 // advance front to point to the next one in line
 front = front->next;
 // deallocate the one to be deleted
 delete victim;
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

