

Namespaces

● in C++ we can group a set of definitions together and give this
collection a name, hence creating a namespace
● the definitions could be of constants, variables, functions, structs, etc
● later we can add more definitions to that namespace if desired
● different namespaces could have different definitions for any given
item
● when a program wishes to use a definition coming from a specific
namespace it identifies the namespace
● we'll look at ways to create a namespace, add to a namespace, and a
variety of ways to identify which namespace definitions we wish to use

Creating a namespace

● we create a namespace and give it a name as follows:
 namespace YourChosenName {

 // the various definitions would go here

 };

● for example, creating a cs160 namespace with a definition for a
LineLength constant and an intArr struct
namespace cs160 {
 const int LineLen = 96;
 struct intArr {
 int* arr;
 int sizeAlloc, sizeInUse;
 };
};

Adding to a namespace

● later in the code we can add more definitions to the
namespace with the exact same syntax, e.g.

namespace cs160 {
 struct floatArr {
 float* arr;
 int sizeAlloc, sizeInUse;
 };
};

Using namespace definitions

● to use a definition from a namespace we specify the
namespace name :: definition name

● for example, if we wanted to declare a floatArr variable
based on the cs160 namespace:

 cs160::floatArr x; // gets the cs160 defn of floatArr

● anyone reading the code can thus see exactly where the
definition of floatArr is coming from

Shorthand: “using xxxx::yyyy;”

● while the previous syntax shows the source of the
definition very clearly, sometimes programmers don't want
to rewrite the “cs160::” every time they use that particular
definition

● as a shorthand, we can tell the compiler (and other
programmers) the namespace to use for a specific
definition with the syntax

 using cs160::floatArr;

● in the rest of the code we can then simply write floatArr
instead of cs160::floatArr

Using an entire namespace

● an even more substantial shortcut is to say we wish to use all
the definitions from a namespace, with syntax

 using namespace cs160;

● we've been doing this with the std namespace
● the downsides to this are that:

– the namespace might have definitions we don't actually want
and that clash with the names of definitions we've created
ourselves in the current program

– the reader of the code can't immediately see where a definition
comes from (is it from a namespace or from somewhere in the
current code)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

