

Programs, files, and memory

● once we have compiled a program, its executable code is sitting
somewhere in the file system
● when we run the program that executable code is copied into the
computer's memory, and space is established in memory for the
global variable and constants, as well as space for the main
routine's local variables and constants
● as functions are called, space in memory is also set aside for
their parameters, local variables, and local constants
● as the function calls complete, their space in memory is released
so it can be used later for other function calls

Pointers and memory addresses

● every variable in our program is stored somewhere in memory
● different types of data require different amounts of storage, e.g. 1
byte for a char or bool, 4 bytes for an int or float, 8 bytes for a long
or double, etc
● memory is divided into tiny storage locations, each a single byte
in size, each storage location is given a unique integer address
● for a gigabyte of memory these addresses might go from 1, 2, 3,
etc to 1073741823
● when we talk of the “address of a variable” we mean the address
of the first of its N consecutive bytes in memory

Addresses and hex notation

● as memory tends to be divided into blocks that are powers
of 2, memory patterns are often easier to spot when shown
in a base that is a power of 2, instead of base 10

● the two most commonly used are base 16 (hexadecimal)
and base 8 (octal)

● we'll use base 16 for showing memory addresses
● to do so, values 0..9 are represented normally, but then 10

is represented as A, 11 as B, ... 15 as F
● thus the hex digits are 0123456789ABCDEF

Quick look at hex

● if we have 537 in decimal we know this represents 5*102 +
3*101 + 7*100

● in hex the base is 16, so 10 in hex represents the (decimal)
value 1*161 + 0*160 = 16

● similarly123 represents 1*162 + 2*161 + 3*160 = 256 + 32 +3 =
291

● 2B3F would represent 2*163 + 11*162 + 3*161 + 15*160 = 8192 +
2816 + 48 + 15 = 11071

● in C++, integers in decimal are written normally, and when a
number is in hex it is preceeded by 0x, thus 0x0123 == 291

Looking up sizes and addresses

● We can look up the amount of storage needed for a given
datatype with the sizeof function

 cout << sizeof(char); // displays 1

 cout << sizeof(int); // displays 4

 cout << sizeof(double); // displays 8

● we can look up the memory address of a variable (in hex)
using &

 int i;

 cout << &i;

// displays something like 0x7fff9361a080

Pointers & and *

● pointers: variables whose purpose is to store or use memory
addresses (they point to some spot in memory)

● pointers also specify what kind of data they can point at, e.g.
pointer to an int, pointer to a float, pointer to a string

● we declare pointer variables by adding * to the data type
 int x = 10; // regular integer variable

 int *iptr; // iptr a pointer for ints

 iptr = &x; // iptr holds x's memory address, points to x

Dereferencing pointers with *

● we can use a pointer to access (read or alter) the contents
of memory at that location

● this is done through the use of *, and is called
dereferencing

 int x = 10;

 int* iptr = &x;

 // next, use * to get at memory through the pointer

 *iptr = 20; // put 20 in memory where iptr says, overwrites x

 cout << x; // displays 20

Passing pointers

● a function can change the value of a variable if we pass the function a
pointer to the variable, e.g.

 void overwrite(int* ptr) { // expects a pointer to an int

 cout << “enter an integer”;

 cin >> (*ptr); // change memory where the pointer says

 }

 int main() {

 int y;

 overwrite(&y); // pass the address of y

 }

● this is what the compiler really does to your code when you use pass
by reference!

You've already used this...

● now scanf's use of & finally makes sense
● scanf was written in C, which didn't have pass by

reference and thus had to use pointers
 int x;

 scanf(“%d”, &x); // pass address of x, so scanf can change x

Arrays and pointers

● An array variable acts like a (constant) pointer to the first
element of the array

 int array[10];

 // all three of the following will give the same address!

 cout << array;

 cout << &array;

 cout << &(array[0]);

● thus when we pass an array as a parameter to a function
we're really passing a memory address, which is why
functions can change the contents of arrays

Structs and pointers

● we can use & to look up the addresses of struct variables
and the individual fields within them, e.g.

 struct point {

 int x, y;

 };

 int main() {

 point p = { 10, 20 };

 cout << &p << “,” << &(p.x) << “,” &(p.y) << endl;

 // address of p and p.x will be the same

 }

Memory address of other things

● we can use & to look up the memory address of many
things: constants, variables, parameters

● we can even use math on pointers to explore
forward/backward from a memory address:

 int* iptr = &x;

 iptr += 8;

 cout << (*iptr); // see what's 8 bytes away from x

● each program is run in its own virtual memory space, so
you're not seeing the memory from other programs, but
you can explore the structure of your program's memory

Memory organization

● your program's logical memory is generally structured
(vaguely) as follows:
– space for admin info for your program

– space for your program's machine code

– space for global constants/variables
– a runtime stack (growing down into the free space)

– the currently free/available space

– dynamic, or heap, storage (growing up into the free space)

The runtime stack

● each call to each function gets memory space for its
parameters, local variables

● this is stored in the runtime stack (so called because each
function call's space gets “stacked” on top of the space for
the function that called it)

● when the function call completes its space gets cleaned off
the stack

Runtime stack example

int f1(int x, int y) {
 int a = x + y;
 return a;
}

int f2(int z) {
 int b = f1(z, 5);
 return b;
}

int main() {
 int c = f2(10);
 cout << c;
}

when we're just before return a, the stack may be

top of stack
a = 15
x = 10
y = 5

b uninitialized
z = 10

c uninitialized

when f1 returns its space will be cleaned off the stack,
then when f2 returns its space will also be cleaned off

The heap: dynamic memory

● the other crucial use for pointers is dynamic allocation and
deallocation of memory

● so far, all our arrays and variables have sizes that are known at
compile time - the compiler knows how much space to set aside
in memory for that variable

● sometimes we don't know how much space we'll need for an
item until the program is already running: dynamic allocation
allows a program to request memory “on the fly”

● this memory is allocated from the heap space
● dynamic allocation/deallocation is our next big topic

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

