
  

Selection (if/else/switch) and booleans

● most programs need some form of decision making so they can 
examine current conditions and choose what to do next
● decisions generally hinge on a true/false condition check (if X is 
true then do Y, otherwise do Z)
● two forms of decision control in C++: if/else statements and 
switch statements
● Boolean logic is a system of true/false logic, using operators for 
logical and, or, and not  (e.g.  if X is true and Y is true then do A)
● Boolean variables will be introduced to hold true/false values



  

Two-way control: if/else

● the most common decision making structure tests one true/false 
condition: if it is true then do one set of actions, otherwise do 
the other

   if (x < y) {

      cout << x << “ is smaller than “ << y << endl;

   } else {

      cout << y << “ is smaller than “ << x << endl;

   }

● exactly one of the two blocks of code is executed
● each of the two blocks can have multiple statements inside { }



  

Multi-way control: adding else if
● sometimes we want to check multiple conditions
   if (x == y) {

      cout << x << “ is equal to “ << y << endl;

   } else if (x < y) {

      cout << x << “ is smaller than “ << y << endl;

   } else {

      cout << y << “ is smaller than “ << x << endl;

   }

● we can have as many “else if” combos as we like
● the code block for the first true condition executes (the else 

block runs if no condition is true)



  

Example: checking bounds

// get the user to enter a value in a specific range,
// check that it is actually within range

cout << “enter a number between 1 and 10” << endl;
float x;
cin >> x;
if (x < 1) {
   cout << x << “ is too small (less than 1)” << endl;
} else if (x > 10) {
   cout << x << “ is too big (larger than 10)” << endl;
} else {
   cout << x << “ is a valid entry” << endl;
}



  

Example: min, max

// return the smaller of the two passed parameters
int min(int a, int b)
{
   if (a < b) {
      return a;
   } else {
      return b;
}

// return the larger of two passed parameters
int max(int a, int b)
{
   if (a < b) {
      return b;
   } else {
     return a;
   }
}



  

Example: sorting 3 params

// sort params in increasing order
void sort3(float &x, float &y, float &z)
{
   float small, large, middle;
   if (x < y) {
      small = x;
      large = y
   } else {
      small = y;
      large = x;
   }
   // 
   if (z < small) {
      middle = small;
      small = z;
   } else if (large < z) {
      // continues on right...

          // continues from left ...
     middle = large;
     large = z;      
   } else {
     middle = z;
   }
   x = small
   y = middle;
   z = large;
}



  

Compound logic expressions

● we can group logical conditions together with logical and 
(the && symbol) or logical or (the || symbol)

● to test if x is less than y AND y is also less than z:
      if ((x < y) && (y < z)) {

● to test if a is less than b OR a is less than c:
      if ((a < b) || (a < c)) {

● to take the opposite of a condition, e.g. if it is NOT the 
case that a < b

      if (! (a < b) ) {



  

Common comparison operators

● less than (a < b)
● greater than (a > b)
● less than or equal to (a <= b)
● greater than or equal to (a >= b)
● equal to (a == b)
● not equal to (a != b)



  

Multiway checks for values

● If we have a variable that might have one of a specific set 
of values we could check with a series of if/else's, e.g.

   if (x == 10) {

      // code for case 10

   } else if (x == 15) {

      // code for case 15

   } else if (x = 17) {

      // code for case 17

   } else {

      // code for any other value

   }



  

switch statements

● an alternative to the previous use of else/ifs

● we use a “switch” on the variable in question, listing cases
   switch (x) {

      case 10:  // code for case 10  

           break;

      case 15:  // code for case 15

           break;

      case 17:  // code for case 17

           break;

      default:  // code for all other cases

           break;

   }



  

break in switch statement

● break is used to indicate the end of each case, otherwise it 
goes on and runs the code for the next case too

● can be used to group values together if the have same 
behaviour, e.g. suppose command is a char variable and we 
don't care if the user enters in upper or lowercase:

   switch (command) {

      case 'q':

      case 'Q':  // code for the Q or q commands

           break;

      ...etc....

   }



  

Boolean variables

● sometimes it is handy to store the condition check in a variable (so 
we can remember it as the basis for some future decision)

● we use variables of type bool, and can assign values of true or false
// suppose data is supposed to be between min and max

bool isDataOK = true;

if ((data < min) || (data > max)) {

   isDataOK = false;

}

// lets us remember for later whether or not the data was ok

// anytime later on we could check it using simply

if (isDataOK) {


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

