
  

Searching and sorting

● it is very common to store and search large amounts of data
● if the data is unsorted then in a search we might have to look at 
every stored value to verify if a specific value is present/not
● if the data is already sorted then we can apply more efficient 
search techniques
● for now we'll assume our data is stored in an array
● we'll look at two search techniques (linear and binary) and one 
sorting techniques (bubblesort), as well as a routine to check if our 
data values are sorted or not



  

linear searches

● a linear search looks in each position of the array, going 
from first to last (or from last to first)

● it works whether the data is sorted or not, but can be slow 
for large arrays since 
– if the value is in the array we still might have to look in every 

position before we finally find it

– if the value isn't in the array we have to check every position 
before we can be sure it isn't anywhere in the array 



  

Example: linear search

● here going from front to back, looking for a target value and returning 
the first array position where we find it

● if we never find it then we return -1 (something that isn't a valid 
position, allows caller to recognize it wasn't found)

int search(float arr[], int size, float target)
{
   for (int p=0; p<size; p++) {
      if (arr[p] == target) {
         return p;  // found it!
      }
   }
   return -1; // never found it
}



  

Calling search

● after calling search, we check the return value to see if it 
found something

int pos = search(myArray, myArraySize, 17.5);
if (pos == -1) {
   cout << “17.5 was not in the array” << endl;
} else {
   cout << “found 17.5 in position “ << pos << endl;
}



  

binary search on sorted data

● if we know our data is in sorted order (and know if it's in increasing 
order or decreasing order) we can use (more efficient) binary search

● use low and high to keep track of the section of the array we are still 
searching, start with 0 and size-1

● repeat until target found or low > high:

– compute the middle position between low and high

– if we find the target in the middle position then we're done

– else if the value in the middle is bigger than what the target then we can 
ignore everything from middle to high, so change high to middle-1

– otherwise we can ignore everything from low to middle, set low to 
middle+1 



  

recursive binary search

● assumes sorted in increasing order
int binarySearch(float arr[], int low, int high, float target)
{
   if (low > high) {
      return -1;  // impossible range
   }
   int mid = (low + high) / 2;  // int division, drops fractions
   if (arr[mid] == target) {
      return mid;  // found it!
   } else if (arr[mid] > target) {
      high = mid - 1;  // value must be in lower half of this section
      return binarySearch(arr, low, high, target);
   } else {
      low = mid + 1; // value must be in upper half of this section
      return binarySearch(arr, low, high, target);
   }
}



  

Sample call

● as with linear search, except we're passing 0 and size-1 as 
the lower/upper portions of the array to search

● if the array finds duplicates then binarySearch doesn't 
necessarily find the first one, just guaranteed to find one

int pos = BinarySearch(myArray, 0, myArraySize-1, 17.5);
if (pos == -1) {
   cout << “17.5 was not in the array” << endl;
} else {
   cout << “found 17.5 in position “ << pos << endl;
}



  

Efficiency

● binary search “discards” half of remaining elements with each call

– after 1 call the elements left are divided by 2, after 2 calls by 2*2, after 
three calls by 2*2*2, ... after i calls by 2i ... 

● suppose we start with 2N elements

– after N calls the space left to search is just 2N/2N, i.e. a single element!

– thus 10 calls can search roughly a thousand elements (1024 = 210)

– 20 calls can search roughly a million elements (220)

– 30 calls can search roughly a billion elements (230)

– etc

● much more efficient than linear search, which had to look at all 2N



  

Iterative (loop) version

int binarySearch(float arr[], int size, float target)
{
   int low = 0;
   int high = size-1;
   do {
        int mid = (low + high) / 2;
        if (arr[mid] == target) {
           return mid;
        } else if (arr[mid] > target) {
           high = mid - 1;
        } else {
           low = mid + 1;
        }
   } while (low <= high);
   return -1;
}

same logic, just using a 
loop to keep updating low 
and high until we're done



  

Bubblesort

● first sorting algorithm, for an array of size N (in this 
example we assume sorting in increasing order)

● go through the entire array over and over
– each time we go through the array, we compare all the pairs of 

adjacent elements
● if a pair of elements is out of order then we swap them

● at the end of each pass through the array it will be closer 
to being sorted

● also after each pass, the next biggest value will have 
reached it's correct position in the array



  

Example: bubblesort

● initial array content 3 17 -1 8
● in first pass

– 3,17 are in ok order so move on

– 17,-1 out of order so swap them, now 3 -1 17 8

– 17,8 out of order so swap them, now 3 -1 8 17

● in second pass
– 3,-1 out of order so swap them, now -1 3 8 17

– 3,8 are in ok order, so move on

– 8,17 are in ok order so move on

● keep repeating passes until eventually all sorted



  

swap revisited

● we'll be swapping array elements frequently, so would help 
to have a swap function

   void swap(float &x, float &y)

   {

      float originalX = x;

      x = y;

      y = originalX;

   }



  

bubblesort version 1

● we can guaranteed that after size-1 passes all values will 
have reached their correct position

void bubblesort(float arr[], int size)
{
   // pass tracks how many passes we've made through array
   for (int pass=0; pass<size-1; pass++) {
       // pair is position of the second of the two elements we're comparing now
       for (int pair=1; pair<size; pair++) {
           if (arr[pair-1] > arr[pair]) {
               swap(arr[pair-1], arr[pair]); // swap the out-of-order pair
           }
       }
   }
}



  

bubblesort version 2

// stops after a pass finds nothing out of order
void bubblesort(float arr[], int size)
{
   bool sorted;
   int pN = 1; // which pass we're on
   do {
        sorted = true;
        // don't have to go into last pN positions, they're already ok
        for (int p=0; p<size-pN; p++) {
             if (arr[p] > arr[p+1]) {
                sorted=false;  // found something still out of order
                swap(arr[p], arr[p+1]);
             }
        }
        pN++;
   } while (!sorted);
}



  

checking if sorted

● we may not know if data in an array is already sorted, so 
can write a routine to check

bool isSorted(float arr[], int size)

{

   for (int p=0; p<size-1; p++) {

       if (arr[p] > arr[p+1]) {

          return false; // found out of order pair

       }

   }

   return true; // everything was in order

}


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

