

Pointers to structs, dynamic data structures

● looked at “new” to dynamically allocate and deallocate arrays
● sometimes want to allocate/deallocate single items
● structs and classes particularly interesting, since they can also
contain pointers to other dynamically-allocated items
● allows us to create lists, trees, graphs, and other data structures
that incrementally grow and shrink over time
● we'll start with the basic syntax for new/delete on single items,
then syntax specifically for structs, then move on to dynamic data
structures in general

New and delete for a single item

● to allocate a single item we leave off the [size], e.g.
 int* iptr = new int;

 float* fptr = new float;

 string* sptr = new string;

● to access the item we use the *ptr, e.g.
 cin >> (*iptr);

 cout << (*iptr);

● to delete the single item we use delete without [], e.g.
 delete iptr;

 delete fptr;

New and delete for a single struct

● new and delete work for structs (or arrays of structs) too
struct Point {

 int x, y;

};

int main() {

 Point *p = new Point;

 Point *arrayPts = new Point[10];

 // use them as long as we need them

 delete p;

 delete [] arrayPts;

}

Syntax 1 for ptrs to structs: (*p).f

● we need * to get at the struct we're pointing too, and a . to
get at the individual field

● I highly recommend the use of (*ptrname).fieldname for
clarity (for you and the compiler!)

 Point *p = new Point;

 if (p != NULL) {

 cout << “Enter x and y values” << endl;

 cin >> (*p).x >> (*p).y;

 }

Syntax 1 for structs of structs

● suppose we have a Circle struct with a dynamically
allocated Point as a field

 struct Point { int x, y; };

 struct Circle { Point *pt; float radius; };

● say we dynamically allocate a circle and its point:
 Circle* cptr = new Circle;

 if (cptr != NULL) (*cptr).pt = new Point;

● accessing the x,y fields directly is kinda ugly:
 cin >> (* ((*cptr).pt)).x;

 cin >> (* ((*cptr).pt)).y;

Syntax 2 for ptrs to structs: p->f

● an alternative syntax is supported for accessing fields
through a pointer to a struct, using p-> instead of (*p).f

● previous example becomes cleaner

 Circle* cptr = new Circle;
 if (cptr != NULL) cptr->pt = new Point;

 cin >> cptr->pt->x;

 // i.e. go from cptr into pt, and from there into x

 // much easier to follow than syntax 1 approach

 // cin >> (*((*cptr).pt)).x;

Chaining items together

● how about a struct with a pointer to its own type
 struct Item {

 string name;

 float price;

 Item* next; // can point to another item

 };

● each item has some data fields but can also access
another (dynamically allocated) item

● can use this to string together any number of items, as
long as we keep track of whichever one is at the front

Setting up a list of items

● allocate items dynamically
● use NULL to indicate no item present
● keep track of front item in list
 int main() {

 Item* front = NULL; // no items at first

 front = new Item; // try to allocate first

 if (front != NULL) { // in case new fails cuz out of memory

 cin >> front->name >> front->price;

 front->next = NULL; // no items after this one, so far

 }

List of items: adding to front

● create a new item, make it's next point to old front item,
then make front point to the new item

 Item* tmp = new Item;

 if (tmp != NULL) {

 cin >> tmp->name >> tmp->price;

 tmp->next = front;

 front = tmp;

 cout << “Added “ << tmp->name << “:” << tmp->price << endl;

 }

● can repeat as often as we like to keep adding more

Printing all the items

● start from front, print each item's data, stop at NULL
 Item* current = front;

 cout << “Current items in the list are:” << endl;

 while (current != NULL) {

 cout << current->name << “:” << current->price << endl;

 current = current->next;

 }

● goes through whole chain from front to end, one item at a
time, with current pointing to whichever one we're on now

List of items: remove from front

● can chop an item out, do something with it, and delete it
● get a temporary pointer to it, adjust front to bypass it, then

use and delete via the temporary pointer
 Item* current = front;

 if (front != NULL) {

 front = front->next; // bypass current

 current->next = NULL; // make sure it's detached from rest

 // do whatever with current

 delete current;

 }

A note on memory leaks

● if we forget to delete an item we've chopped out of our list,
and don't keep a pointer to it, then we lose the ability to
ever delete it

● the memory is thus unrecoverable (until the program ends)
● if this happens every time we remove an item, and we do a

lot of adds/removes over time, then gradually our program
is chewing up system memory

● eventually we run out of memory and get a crash
– how many odd crashes have you seen in games after you have

kept them running for a long time...?

Dynamic data structures

● many programs rely on being able to incrementally add
to/remove from collections of data

● simplest forms are lists, usually where we add to the front
or back, usually each item has a pointer to the things just
ahead of/behind them in the list

● common variants are queues (add to back, remove from
front) and stacks (add to front/top, remove from front/top)

● more sophisticated structures can be created if we give the
items pointers to greater numbers of other items

Dynamic data structure examples

stack: push/pop at top

queue: insert at back, remove from front

tree: access through “root”

graph: anything can connect to anything

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

