

Trees, search trees

● linked lists are nice simple dynamic data structure, but are
inefficient for anything but sequential access or front/back access
● many other data structures are used for scenarios where you
need dynamic sizing but non-sequential access
● trees: each internal node has pointers to zero or more “child”
nodes, rather than left/right neighbours
● topmost node is called the root (has no “parent”)
● gives a heirarchical structure, can have a large number of nodes
yet each can have a short path from the root

tree: root, leaf, internal nodes

root node: top, has no parents

leaf nodes, any node with no children

internal nodes:
any node with both a parent and children

typical tree operations

● initialize a new, empty tree
● insert a new node into the tree (but where?)
● search the tree for node containing specific data
● print the tree contents (but in what order?)
● remove nodes from the tree (how to restructure?)
● delete all the nodes in a tree

Implementation

● can be much like a linked list
● each node can be a struct or class, with data fields and

pointer fields (but for parent/children instead of next/prev)
● tree itself maintains a pointer to root node instead of

front/back

k-ary trees

● binary trees: each node has (at most) two children
– ternary trees: each node has (at most) three children
– quad trees, etc

● binary search trees widely used
– organized to be rapidly searchable on some data field

– small values go down one side of tree, large values the other

● balanced binary search trees
– binary search treesm but re-organized as/when needed to be

as dense as possible (use fewest levels possible, try to keep
every node as close to the root as possible)

binary search trees

● the backbone of many common searchable data structures
(well, balanced binary search trees)

● assumes each node contains some “key” value we're
using as the basis for searches

● first node created/inserted into a tree becomes the root
● subsequently, any value inserted goes into left/right

subtrees based on whether its key is smaller or larger
– applied recursively as you go down the tree

● when inserting or searching you can always look at current
node's key to see which direction to go

example: inserting values

● suppose our keys are integers, first one inserted is a 93

93

● then someone inserts 27: smaller than 93 so goes down left

● then someone inserts 32: smaller than 93 so goes
into left subtree of 93, then bigger than 27 so goes
into right subtree of 27

93

27

32

27

93

example: continued

● suppose then insert 104, then 15, then 96

93

27 104

15 32 96

104 > 93 so goes in right

15 <= 93, then < 27

96 > 93, then <= 104

● keep going down left/right using <=, > rule
● insert when you find an empty spot

searching

● when searching, you start at the root
● compare value you're looking for to the current node's key
● go left if search value < node's key
● go right if search value > node's key
● continuing searching down the tree until you find your

target value or hit a leaf without finding it

search example

● suppose we were searching for 32

93

27 104

15 32 96

32 < 93 so into its left subtree

32 > 27 so go into its right subtree

found!

● suppose we were searching for 29

– search would left from 93 then right from 27

– would try to go left from 32, but nothing there, so value not found

printing

● suppose we want to print the tree content in sorted order (based on
the nodes' keys)

● for each node, the smaller values are in its left subtree so want to
print those first, then the current node, then the values in its right
subtree

● leads to simple recursive algorithm given ptr to a node

print(node *n)
 if n isn't null:
 print(n->left)
 cout n's data fields
 print(n->right)

// top-level call would be to print(root)

tree traversals

● our print algorithm did left subtree, current node, right subtree
● called an inorder traversal (current node done in middle)
● preorder traversals do current node, then left subtree, then right

subtree (called a topological sort, visits parent before subtrees)
● postorder traversals do left subtree, then right subtree, then

current node
● the pre/in/post indicates when position the current node is done
● pre/postorder traversals useful for generating prefix/postfix

expressions (a bracket-free way to unambigously represent
numeric expressions)

sidebar: prefix, infix, postfix expressions

● given expression (x * y) - (a / (b + c))

● tree rep shown on right, leaf nodes contain
data, ops in internal nodes

● simple inorder traversal gives infix expression
x * y - a / b + c

● simple preorder traversal gives prefix
expression - * x y / a + b c

● simple postorder traversal gives postfix
expression x y * a b c + / -

● the infix is ambigous without brackets, the
infix/prefix are not, wind up being simpler to
evaluate

-

* /

x y a +

b c

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

