

Example: resizable circular buffers

● Using an array implementation for a queue
● Can insert/remove one element at a time
● Insert new elements after the last/back current element
● Remove elements from the front
● Inserts might reach end of array when space is available at the
front, so will have the end “wrap-around” to the front
● Dynamically-allocate the array with arbitrary size at start
● If the array is completely full we dynamically allocate a new one,
twice as big, move everything across and delete old one

Wrap-around example

● array of size 5 (so positions 0,1,2,3,4)
● sequentially insert values 10, 17, 30, 29 (in positions

0,1,2,3)
● do 2 removes (takes out the 10,17, positions 0,1 now free)
● insert 63 (position 4)
● insert 8 - have reached end of array for insert positions,

but the front (positions 0 and 1 right now) are available, so
insert at position 0

Keeping track of front/back

● keep track of which array positions currently hold the first
(front) element and the last (back) element

● set front and back to -1 whenever buffer is empty
● when insert into empty buffer, put in position 0 (front and

back both 0 since it is both first and last right now)
● increment front on inserts, increment back on removes
● for array of size N, when front == N move front to 0 and

when back == N move back to 0

Keeping track of current “size”

● Can keep track of number of currently stored elements
using with separate variable, e.g. currsize=0 initially,
increment/decrement with insert/remove

● always remember to check currsize > 0 before remove and
currsize < array size before insert

● special cases when we remove only element in buffer (set
front/back to -1) or when we insert element in empty buffer
(set front/back to 0)

Don't absolutely need size variable

● Can keep track of current size using just front/back
● if no wrap around currently in use, current size is simply

back + 1 - front
● if wrap around is in use (i.e. back < front) then this will be

negative, off by N (allocated array size), so add N
● we know buffer is empty if front/back are both -1

Use of modulo with wrap around

● suppose we want the i'th element of those currently stored
(i.e. offset from the front)

● if we know front, back, and N then we can compute whre
in the array the ith element is stored using

 (front + i) % N

● if no wrap around in use, or the ith element is before the
wrap around point, this gives same as front + i

● if i is after a wrap around point then this gives correct
position at front of array

Resizing the buffer

● If we ever completely fill the buffer and need to do another
insert then we need a new bigger buffer
– will allocate a new one twice as big (and check it worked)

– copy the content across to new buffer

– change our array pointer to point to the new one
– delete the old one

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

