

Top down design, modularity, & abstraction

● one key design focus is decomposition of overall problem
into subproblems that can be solved independently
● allows developer to focus on design of one part, abstracting
away the inner workings of the other parts
● while implementing a high level component, you think of the
abstract view of what the lower level components do –
ignoring the gory details of how they do it
● while implementing a lower level component, you ignore
what the higher level component might be using it for

Abstraction

● modeling in a way that provides “just enough” detail to solve the
immediate problem

● control abstraction (e.g. functions, methods):

– gives a logical name to a sequence of actions and describes its
externally-observable effects

– identifies any necessary inputs/outputs (including parameters)
● data abstraction (e.g. structs or classes):

– gives a logical name to a data type

– describes the nature of the information stored

– describes the publicly-visible operations that can be used to
manipulate the information stored

Top down decomposition

● For system as a whole, we think of who (users/other
systems) it interacts with – what data it takes in, what
processing it does, what data it pushes out

● We then think of it as a small number of key subsystems,
and how they interact with one another

● Then we carry out the decomposition process on each
subsystem, stopping the decomposition “tree” when we
reach components that are simple enough to implement
directly

Decomposition into components

● in first CS course (e.g. 160) we often think of top down
design purely in terms of division into functions
– main routine calls several functions to perform core/major tasks

– each of those may call multiple other functions to perform
smaller parts of their specific tasks

– etc

● in larger programs, we might need to divide the overall
program into collections of data types/functions, where the
entire collection is needed to handle major subproblems

Subsystems, modules,etc

● terminology varies from developer to developer, but we
often refer to different groupings of program components
by size, e.g.
– system: the whole thing (all files, functions, structs, etc)
– subsystems: division of system into large collections of files,

data structures, functions, etc

– modules: division of an individual subsystem into smaller
collections, for a specific set of tasks within the subsytem

Deciding how to decompose

● For each item we decompose, we need to consider the
best place to do different parts of the task:

● Where does data input, error checking take place
● Where does data storage take place
● Where does data transformation take place
● Where does data output take place

● Want to get good balance of data processing, storage, and
 transmission based on the resources available

● Want to decompose in a way that is intuitive for the
developer, so if they need to modify a feature it is easy to
predict which components contain the relevant code

Balancing loads

● Many complex systems have both server-side and client-side
processing

● Server-side might involve web servers, database servers,
various processing servers (and possibly layers of gateways
and mirrors)

● Client-side might involve running apps or programs on user
devices, in browsers, etc

● Need to consider the storage and processing power of the
different components, how much data we need to transfer
between the components, and how sensitive the data is

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

